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Abstract

In this paper, we propose a polling accuracy measure for multi-party
elections based on a generalisation of Martin, Traugott and Kennedy’s two-
party predictive accuracy index. Treating polls as random samples of a vot-
ing population, we first estimate an intercept only multinomial logit model
to provide proportionate odds measures of each party’s share of the vote, and
thereby both unweighted and weighted averages of these values as a sum-
mary index for poll accuracy. We then propose measures for significance
testing, and run a series of simulations to assess possible bias from the re-
sulting folded normal distribution across different sample sizes, finding that
bias is small even for polls with small samples. We apply our measure to the
2012 French presidential election polls to demonstrate its applicability in
tracking overall polling performance across time and polling organisations.
Finally we demonstrate the practical value of our measure by using it as a
dependent variable in an explanatory model of polling accuracy, testing the
different possible sources of bias in the French data.

This is the authors’ version. The final version will appear in Political
Analysis 2013. Go to www.kai-arzheimer.com/
a-new-multinomial-accuracy-measure-for-polling-bias
for more information.

1 Introduction
Work on pre-election polls forms a vital part of election analysis and forecasting in
both academic publications and media coverage. Frederick Mosteller (Mosteller
et al., 1949) introduced the notion of accuracy measures to assess polls against
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actual election results. Those indices are designed for two-party/-candidate races,
and cannot easily be applied to multi-party/-candidate elections. An equivalent
index has not so far been derived for multi-party elections, limiting the ability of
researchers to measure overall polling accuracy in such cases.

Starting from the predictive accuracy measure proposed by Martin, Traugott
and Kennedy (2005), we propose such an accuracy measure, B, for elections with
more than two parties or candidates. First, we derive this index mathematically
from an implementation of the multinomial logistic model, including the relevant
tests of statistical significance. We then consider how this aggregate measure may
be biased, given it is based upon compositional data, and use a simulation to exam-
ine the extent of this bias. Finally, we use the B measure as the dependent variable
in an explanatory model of different sources of polling bias, as an illustration of
how the measure may be applied empirically.

2 A Generalisation of Martin, Traugott and
Kennedy’s Measure of Bias

2.1 The Martin, Traugott and Kennedy Approach
Martin, Traugott and Kennedy (2005) propose a measure, A, for survey bias that
is the natural logarithm of an odds ratio. Illustrating their approach with the com-
petition between the two major American parties, they define the numerator as
the odds of a Republican choice in a given pre-election poll r/d, where r is the
number of respondents favouring the Republicans and d the equivalent number of
Democrats. The denominator of this ratio is R/D, where R and D are the numbers
of Republican/Democratic voters in the election. Consequently, r, d,R and D can
be interpreted as the respective proportions of respondents and voters.

As Martin, Traugott and Kennedy show, A is superior to earlier measures of
poll accuracy. In its original form, however, A is restricted to two-party systems,1

and is therefore inapplicable to the majority of democratic systems. Martin et al.
provide a suggestion as to how a three-party index might be adapted from their
two-party index, but this only measures the accuracy of the poll for a third party
as a fraction of the two main parties’ total vote (Martin, Traugott and Kennedy,
2005, 367). It does not provide a single measure across all three parties.

1Or more generally to dichotomous variables with a known distribution in the population, such
as gender or registration as a voter.
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2.2 Generalisation for the Multi-Party Case
To generalise the Martin, Traugott and Kennedy approach for a choice between
k parties, we define p as a vector of proportions p1, p2, · · · pk of respondents who
support party i in a given poll, and v as a vector of proportions v1, v2, · · · vk of
citizens who actually vote for the respective party.2 Applying this generalised ter-
minology to a two-party race, Martin, Traugott and Kennedy’s measure becomes

A = ln

 p1
p2
v1
v2

 . (1)

Note that p1, p2, v1, v2 could be written as a 2 × 2 table:
( p1 p2

v1 v2

)
. A is then

identical to the log of the familiar odds ratio, a central concept in the analysis of
tabular data (Agresti, 2002, 44-46). In an application with k > 2 parties, there are
k − 1 unique odds ratios (Agresti, 2002, 56). This suggests calculating a series of
logged odd ratios as per-party measures of bias, choosing one arbitrary party as
the reference.

There are, however, two problems with this approach. First, the clear inter-
pretation of A would be lost, since the log odds ratio is a measure of bias relative
to the party used as the reference. Unless support for the reference party is mea-
sured without bias, the results will be misleading. To see why, assume a simple
case where support for the reference party r is overestimated in a given poll, but
support for another party a is measured accurately. It follows that pr > vr, whereas
pa = va. Under these assumptions, the odds ratio for party a with respect to the
reference party is

ORa =

 pa
pr
va
vr

 =

(
pavr

prva

)
=

vr

pr
⇔ ORa < 1, (2)

which results in a negative log odds ratio although support for party a is measured
without bias. In short, a measure based on the (log) odds ratio would be biased
proportionate to the reference party’s own polling bias. Secondly, it follows that,
because the (log) odds ratios capture bias relative to the reference party, their sum
(and consequently their average) depends on the choice of the reference party,
making it impossible to derive a unique measure of overall bias.

2We can treat (self-declared) non-voters as an additional party.
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We therefore propose a different strategy. Equation (1) can be rewritten as

A = ln

 p1
p2
v1
v2

 = ln

 p1
1−p1

v1
1−v1

 . (3)

Using our terminology and following the suggestions from Martin, Traugott
and Kennedy (2005) as well as Durand (2008), there is a straightforward way to
further generalise A for use in a multi-party competition:

A′i = ln


pi∑k

j=1 p j

vi∑k
j=1 v j

 for j , i (4)

= ln

 pi
1−pi

vi
1−vi

 = ln
(

pi

1 − pi
×

1 − vi

vi

)
(5)

= ln
(

pi

1 − pi
×

1
Oi

)
, (6)

where A′i represents bias with respect to party i, and Oi are the odds (i.e. v/1 − v)
of a vote for this party. The measure of any A′i is therefore not conditional upon
an arbitrary selection of reference party.

A′i retains the clear interpretation of Martin, Traugott and Kennedy’s original
A: positive values indicate bias in favour of party i, whereas negative values imply
bias against i. In the (highly unlikely) event that a poll is in perfect agreement with
the result of the actual election, all A′i are zero.3

If one is willing to treat a given sample as fixed and is only interested in de-
scribing the extent of bias in that sample, calculation of A and A′i is a trivial alge-
braic exercise. In most settings, however, a survey sample is treated as a single
realisation of a random process that under essentially identical conditions could
have produced an infinite number of similar but slightly different samples. From
this perspective, A and A′i are just estimates for the true systematic bias that results
from house effects, social desirability, or real changes in the population after the
poll was taken. As a consequence, the question of the precision (standard error)
of these estimates is crucial.

To our knowledge, there is no existing derivation of an index functionally
equivalent to A′i and its standard error to define bias in a multi-party system, and
consequently no software package available to calculate any such estimators. It

3Moreover, like in the case of the original A, calculating exp(A′i) recovers the odds ratio.

4



is, however, possible to derive these quantities from the parameters and standard
errors of an equivalent Multinomial Logit Model (MNL).

To see how the MNL and A′i are related, consider an MNL containing only in-
tercepts, where the probability pi of reporting a vote for party i is constant and does
not depend on any covariates. As is common for MNLs, the model is parametrised
by treating one party as the reference category to which all comparisons refer. For
simplicity’s sake, define party 1 as the reference, but this choice is arbitrary. Since
the model has no explanatory variables, pi can be rewritten (cf. Long, 1997, 154)
as

pi =
exp(βi)∑k

j=1 exp(β j)
(7)

where βi is the respective constant from the intercepts only MNL for party i and

β1 = 0 (the reference category).

If we substitute this parametrisation into Equation (5), we can calculate A′2 as

A′2 = ln


exp(β2)∑k
j=1 exp(β j)

1 − exp(β2)∑k
j=1 exp(β j)

×
1 − v2

v2

 (8)

While re-defining A′i as a non-linear function of k−1 parameters might appear
complicated, estimating the βs by maximum likelihood generates asymptotically
correct estimates for the standard errors of these coefficients. These estimates can
in turn be combined to derive an asymptotic standard error for A′i .

4

Inevitably, use of the MNL may raise concerns over assumptions of indepen-
dence from irrelevant alternatives (IIA). The notion of independence from irrel-
evant alternatives has a long and convoluted history in game theory and (social)
choice theory (Ray, 1973) that harks back to the 18th century (McLean, 1995).
Luce (1959, 9) introduced IIA as a property of individual choices which are
stochastic but internally consistent, and derived the logit formula from this prop-
erty (Train, 2009, 34).

Substantively, the IIA assumption states that the odds p(a)/p(b) of preferring
alternative a over alternative b are not affected if new alternatives are added to the

4The combination relies on an approximation by the delta method that is implemented in the
built-in Stata command nlcom. For a detailed account, see Section B. Again, the necessary
calculations and calls to nlcom are carried out by our add-on.
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choice set or existing alternatives are removed. In terms of the statistical model,
the corollary of the IIA assumption is a specific error structure. Let Un j = Vn j +εn j

be the utility that decision maker n derives from choosing alternative j. Let Vn j

be the representative utility that depends on observable characteristics of the deci-
sion maker and the alternatives, and let εn j be some additional unobserved utility
component (Train, 2009, 14-15). Finally, assume that while the utility itself is un-
known to the analyst, the decision maker always chooses the alternative yielding
the highest utility.

Then the logit model is obtained by assuming that “each εn j is independently,
identically distributed [iid] extreme value” (Train, 2009, 34). If one alternative is
perceived as a substitute for another alternative, their random utility components
will be correlated, rendering the assumption of independent errors untenable and
the logit specification inadequate.5

In electoral research, the main competitors of the MNL that do not require εn j

to be iid are the Multinomial Probit Model (MNP, Alvarez and Nagler 1998) and
the Mixed Parameters Logit Model (MXL, Train 2009, ch. 6). But while the MNP
and the MXL are superior in theory, Whitten and Palmer (1996, 256) argue that
major cases of party system change that would expand or contract the choice set
are rare and will affect voting behaviour so strongly that “inferences drawn from
an empirical analysis of an election that occurred prior to party entry or exit would
be questionable regardless of the estimation procedure used”.

More generally, Train (2009, 36) claims that correlations amongst the errors
“seem to have less effect when estimating average preferences than when forecast-
ing substitution patterns”. Accordingly, Dow and Endersby (2004) have demon-
strated that the IIA assumption rarely poses a problem in multi-party elections. Fi-
nally, simulations have shown that the MNL estimator often outperforms the MNP
and MXL estimators even if the IIA assumption is seriously violated (Kropko,
2010), while the most popular formal tests for the validity of the IIA assumption
often disagree and have poor properties even in large samples (Cheng and Long,
2007).

Could a violation of the IIA assumption pose a problem for our methodology?
On the one hand, it could be argued that concerns about correlated errors are
largely irrelevant in the context of our measure, because we are neither specifying
an explanatory model nor making predictions. Rather, we are using the close

5As Train (2009, 42) points out, there are (at least) three conditions under which the logit
specification is inadequate: when the effects of attributes vary randomly over decision makers;
when repeated choices are affected by correlated unobserved factors, and when substitution across
alternatives is not proportional.
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relationship between the MNL and our measure to obtain estimates of A′i , B, and
their standard errors in the same way the binary logit model could be employed to
estimate Martin, Traugott and Kennedy’s A.

More pragmatically, the MNP and the MXL are not identified for an inter-
cept only setup, as there is no variation within groups from which a covariance
structure for εn j could be estimated. For the same reason, formal tests such as
the Hausman test or the Small-Hsiao test of IIA which work by estimating re-
stricted models that exclude one of the alternatives will always fail to disconfirm6

the IIA assumption because this restriction does not change the odds in a model
containing only intercepts.

On the other hand, however, the validity of the IIA assumption is first and fore-
most a substantive question that should not be dismissed for technical reasons. We
therefore urge researchers wishing to apply our methodology to heed McFadden’s
(1973, 113) early advice that multinomial logit analysis should be restricted to
situations where choices are perceived as “distinct . . . by each decision maker”.
More specifically, differences between polls and electoral results might overstate
the degree of bias in a setting where two or more parties are seen as close sub-
stitutes for each other by a relevant number of voters (e. g. because they form a
pre-electoral alliance or are jointly perceived as “outsider parties”) so that voters
are essentially indifferent between them. In such cases, researchers should make
the IIA assumption more plausible by grouping similar parties together.7

2.3 Composite Measure of Polling Bias: B and Bw

While a series of k measures of bias for each and every party is certainly informa-
tive, researchers will want to know if the poll as a whole is biased, and whether
this bias is statistically significant. Assessing the statistical significance of any
differences between sample and population is straightforward using a goodness of
fit test employing either Pearson’s classic χ2 or the likelihood-based G2 statistic.

Both χ2 and G2 rely on approximations that work well in large samples. For
very small samples or situations where the expected values are very low for some

6The calculation of the Hausman statistic involves pre- and post-multiplication by the vector of
differences between the coefficients of the full and the restricted model, which are null. Therefore,
the test statistic is always null for the model containing only intercepts. The Small-Hsiao test
randomly divides the data into subsamples. Again, there will be no systematic difference between
the full and the restricted model, but because of the randomisation, a proportion of the tests that
converges to the chosen significance level α will reject the null hypothesis.

7This is akin to the nested logit model (Train, 2009, ch. 4.2).
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categories, exact tests are more appropriate. However, this should rarely be a con-
cern in practice, as modern academic and commercial opinion surveys normally
fall into the “large” category. Unfortunately, χ2 and G2 are not suitable for sum-
marising a poll’s total bias. As test statistics, they depend on the sample size and
the number of categories and have no clear substantive interpretation.

Simply averaging over the A′i is intuitively appealing but not an ideal solution,
because the A′is and their sampling distributions are not independent of each other.
More specifically, in a scenario with k parties, one of the k A′is is redundant, be-
cause the projected and real vote shares must sum to unity. To see how the A′Is are
related, consider A′1 in a three-party race:

A′1 = ln
(

p1

1 − p1
×

1
O1

)
(9)

= ln
(
1 − (p2 + p3)

(p2 + p3)
×

1
O1

)
, (10)

since 1 − p1 = p2 + p3.
p2 and p3 can be re-expressed in terms of A′2 and A′3 by reversing the transfor-

mation in Equation (6):

pi =
exp

(
A′i × Oi

)
1 + exp

(
A′i × Oi

) (11)

Substituting Equation (11) into (10) yields

A′1 = ln


1 −

(
exp(A′2×O2)

1+exp(A′2×O2) +
exp(A′3×O3)

1+exp(A′3×O3)

)
exp(A′2×O2)

1+exp(A′2×O2) +
exp(A′3×O3)

1+exp(A′3×O3)

×
1

O1

 . (12)

More generally, each A′i can be written as

A′i = ln


1 −

∑k
j=1

(
exp

(
A′j×O j

)
1+exp

(
A′j×O j

)
)

∑k
j=1

(
exp

(
A′j×O j

)
1+exp

(
A′j×O j

)
) ×

1
Oi

 for j , i. (13)

8



The odds for any party i can be restated as a function of the odds for all other
parties, because the vote shares sum to unity. Since

Oi =
vi∑k

j=1 v j
=

1 −
∑k

j=1 v j∑k
j=1 v j

for j , i (14)

and vi =
Oi

1 + Oi
, (15)

Oi =
1 −

∑k
j=1

O j

1+O j∑k
j=1

O j

1+O j

for j , i, (16)

which can again be substituted into (13):

A′i = ln


1 −

∑k
j=1

(
exp

(
A′j×O j

)
1+exp

(
A′j×O j

)
)

∑k
j=1

(
exp

(
A′j×O j

)
1+exp

(
A′j×O j

)
) ×

∑k
j=1

O j

1+O j

1 −
∑k

j=1
O j

1+O j

 for j , i. (17)

The upshot is that the dependencies within p and v create a more compli-
cated dependency amongst the A′is. More precisely, p and v are compositions,
because they must sum to the respective total of voters/respondents. This con-
straint generates negative correlations amongst the sampling distributions of their
constituents, which renders them unsuitable for standard statistical analysis – a
problem that was identified by Pearson (1897) in the late 19th century but has
mostly been ignored in the social sciences (Bacon-Shone, 2011).

In p and v, each element is a linear combination of all the other elements.
In the vector of A′is, each element is a nonlinear combination of all the other
elements, carrying the problem forward. This is obvious for k = 2, where A′2
is just the negative of A′1. Consequently, the average of both values is always
zero, regardless of the extent of survey bias. This perfect negative relationship
between the A′is is somewhat diluted as k becomes larger and the distribution of
voters/respondents more equal across the categories, but the fact remains that the
mean of the A′is gives an over-optimistic impression of the survey’s quality, be-
cause it is effectively biased towards zero.

Aitchison (1982) has pioneered the use of log-ratio transformations of com-
positional data that makes multivariate analysis feasible. Building on this seminal
contribution, he and others have extended this approach to accommodate a host
of complex problems (see Pawlowsky-Glahn and Buccianti, 2011). These tech-
niques, however, deal with the transformation of vectors of compositional data
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which are constrained to sum up to a total, whereas our generalisation of Martin,
Traugott and Kennedy’s A is a vector of scalar measures that are already based on
a logged ratio of ratios, subject to a more complex constraint. It is not obvious
how compositional data analysis could be applied in this situation.

We therefore propose using the unweighted average of the respective absolute
values of the k A′is as the aggregate measure of bias, B:

B =

∑k
i=1|A

′
i |

k
. (18)

In a two-party scenario, B is identical to the absolute value of Martin, Trau-
gott and Kennedy’s original A and so again retains A’s useful properties.8 For k
parties, exp(B) is the average factor by which the parties’ odds are over- or under-
estimated. Since the average is not weighted by true party size, including many
small parties for which survey bias is small in absolute terms but large in relative
terms may result in overly pessimistic Bs.

In forecasting applications, with focus generally on predicting the vote of
larger parties, the unweighted B will be inflated by inaccurate polls for parties
which win only very small shares of the vote. To correct this, we offer a weighted
version of index, Bw, which weights contribution to overall poll error by relative
share of the total vote. An alternative strategy would be to combine all small par-
ties into a generic “other” category, in the expectation that individual polling errors
for these parties will cancel out, and therefore will inflate B less markedly. For
researchers interested in polling performance for small parties, the unweighted B
is evidently more appropriate.

2.4 Significance Tests for Multi-Party Polling Bias
But B and Bw are not without problems. While the A′is themselves are approxi-
mately normally distributed, (as shown in Section B), their absolute values follow
a folded normal distribution that is skewed to the right and has a positive expecta-
tion, as there are by definition no negative values. Their sum (on which the average
is based) also has a positive expectation and a non-normal sampling distribution,
although the central limit theorem guarantees that the non-normality quickly de-

8In a two-party race, bias in favour of the first party necessarily results in bias against the
second party and vice versa. The log-transformation ensures that the arbitrary decision which
party forms the base for the calculation of the odds affects only the sign of A, not its magnitude.
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Figure 1: Simulated sampling distribution of Bw when null hypothesis of no bias
holds

clines for higher values of k.9 As a result, B and Bw have positive expectations
even if the null hypothesis of zero bias holds. This, and their skewed sampling
distribution, would render significance tests based on them dubious at best.

We employ a two-pronged strategy to deal with this problem. First, we suggest
testing the null hypothesis of zero bias solely on the basis of χ2 and G2. Because
the χ2 and likelihood-ratio tests are already specified in terms of k − 1 degrees of
freedom to account for the compositional nature of p and v, no further corrections
are required.

Second, since B and Bw are attractive because they are easily interpretable,
we assess the severity of their upward bias through a series of simulated unbiased
draws from known populations. For this simulation experiment, we define six sce-
narios which closely resemble real-world conditions for survey-based research.10

9Moreover, taking absolute values does not (completely) remove the collinearity but rather
changes the signs of the correlations, thereby increasing the variance of the sum’s sampling distri-
bution.

10These conditions are (1) 1
3 ,

1
3 ,

1
3 ; (2) 2

5 ,
2
5 ,

1
5 ; (3) 1

2 ,
1
4 ,

1
4 ; (4) 1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ;
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Condition (1) represents a balanced three-party system, while conditions (2)
and (3) stand for a “two-and-a-half” party system and a three-party system with a
single dominant party, respectively. Scenario (4) represents a highly fragmented
six-party system, while scenario (5) stands for a situation with one dominant and
many minor parties. Finally, scenario (6) depicts a system with two major, two
minor and two small parties. We refrained from simulating random sampling
under systems with even more (relevant) parties, because these would most likely
form electoral alliances or be grouped together by the analyst.

Under each of these conditions, we simulated polling using three sample sizes:
n = 1000, which probably comes closest to what could be considered the standard
size of an opinion survey; n = 500, which might be an adequate size for a repre-
sentative pilot study; and n = 100, which could be used in experimental settings
or when testing new instruments in the classroom. Each of the 18 experiments
was replicated a thousand times.

Figure 1 shows kernel density estimates of the distribution of Bw under these
conditions, with the thin black line under the distribution indicating a centred
90 per cent interval and the small black dot on that line marking the median of
the distribution. Obviously, for all conditions and sample sizes, the distributions
are skewed to the right, although they become more symmetric as the sample
size increases. More importantly, however, the median value of Bw is reasonably
close to zero even if n is just 500. For n = 1000, even the 95th percentile is
in the range of 0.1, meaning that it is quite unlikely to observe a higher value
of this statistic when the null hypothesis of no bias holds.11 While its non-zero
expectation is clearly a drawback that renders the statistic unfit for significance
tests, the results show that the statistic’s actual upward bias is moderate in large
samples, making Bw an easily interpretable (if slightly conservative) measure of
overall poll accuracy.12

(5) 1
2 ,

1
10 ,

1
10 ,

1
10 ,

1
10 ,

1
10 ; (6) 3

10 ,
3
10 ,

1
20 ,

1
20 ,

3
20 ,

3
20 .

11A value of 0.1 for Bw would imply that on average, the odds of a vote for any given party would
be over- or underestimated by about ten per cent, as exp(0.1) ≈ 1.105 and exp(−0.1) ≈ 0.905.

12Finally, one might also wish to consider the test’s power to detect overall bias. We carried
out a series of simulations which show that the test has sufficient power to pick up substantively
relevant bias under a wide range of conditions. Detailed results are presented in Section C.
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Candidate % (vote) individually
coded
2 3 5 8

François Hollande 28.63 • • • •

Nicolas Sarkozy 27.18 • • • •

Marine Le Pen 17.90 • • •

Jean-Luc Mélenchon 11.10 • •

François Bayrou 9.13 • •

Eva Joly 2.31 •

Nicola Dupont-Aignan 1.79 •

Philippe Poutou 1.15 •

Nathalie Arthaud 0.56
Jacques Cheminade 0.25

Table 1: Percentage of valid vote in first round of 2012 French Presidential elec-
tion

3 An Application: Polling Bias in French Pre-
Election Polls

We turn now to a simple empirical application of the B and Bw indices. The 2012
French presidential elections on 22 April saw 10 candidates compete in the first
round of the election, the top two candidates progressing to the run-off. Table 1
lists the candidate names and eventual first round scores.

The database of surveys in France in the pre-election period provides a total
of 102 datapoints from 1 July 2011. We include only those surveys taking place
after 22 March 2012 (one calendar month before the election). This date is also
one week after the final cut-off date for candidate registration, after which we
expect voter preferences to stabilise relatively quickly. This consequently allows
a reasonable number of surveys (32) across eight different polling companies, as
well as minimising likely changes in candidate preference.
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3.1 Across-time Polling Bias in Pre-Election Polls by Organi-
sation

Table 1 also indicates the four different coding strategies we use to test the two in-
dices. The Stata add-on we use to calculate the B measure potentially allows us to
include up to twelve individual values. Realistically, however, this produces a host
of A′i scores, which for at least the four lowest-ranked candidates will have little
analytical value, unless polls demonstrated very large bias. Two minor Radical
Left candidates, Philippe Poutou and Nathalie Arthaud, as well as Jacques Chem-
inade, a maverick candidate and head of the LaRouche movement in France, and
Nicolas Dupont-Aignan, a dissident Right-winger, only managed 3.75% of the
vote between them, and so would normally be classified “other”. There is also
an evident differential between the fifth and sixth candidates, and indeed between
the second and third. Of greater interest, then, would be what happens to the B
index when different coding choices are made. We therefore include four different
scenarios, with two-, three-, five- and eight-candidate codings. For the purposes
of analysis, we treat each of the four different codings as an observation, giving a
total of 128 observations across the 32 surveys.

Using the Pearson χ2 and likelihood ratio G2 scores, a total of 68, or just over
half of the observations turn out to be biased at the 95% confidence level.13 Table
2 reports the B and Bw values for these. The two-candidate column is omitted, as
none of the surveys showed significant bias using this coding. Variation from the
eventual outcome amongst the losing candidates (those missing the second round
run-off) clearly nets out. Equally, a perverse effect of coding these eight candi-
dates in a single category turns them into an artefactual largest “single” candidate,
thereby weighting down the individual error for the two real candidates in Bw.

The three-candidate coding shows much greater evidence of bias – entirely in
line with expectations, given that the Extreme Right candidate, Marine Le Pen,
displayed much more unstable polling estimates throughout the entire campaign.
The five-candidate coding, including all candidates with scores above 5% sees the
vast majority of surveys (26 of 32) exhibit significant bias. Results for the even
more fine-grained eight-candidate coding are very similar, with 24 of 32 surveys
deviating significantly from the election’s result.14

13A survey was classified as biased if either of the measures indicated statistically significant
bias.

14The very slight decrease in the number of significantly biased surveys is due to two LH2 polls
(April 11 and April 18). Their border-line significant bias is increased just a little further by coding
eight candidates separately, but this change is offset by the additional degrees of freedom.
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Date Pollster Bw(3) Bw(5) Bw(8)
22 March, 2012 BVA 0.131 0.182 0.195
24 March, 2012 IPSOS 0.108 0.110
25 March, 2012 IFOP 0.121 0.146 0.163
26 March, 2012 Harris interactive 0.110 0.129
27 March, 2012 TNS Sofres 0.124 0.129
27 March, 2012 OpinionWay 0.087 0.105
27 March, 2012 CSA 0.148 0.187 0.196
31 March, 2012 BVA 0.098 0.110 0.115
31 March, 2012 LH2 0.120 0.168 0.173
31 March, 2012 IPSOS 0.133 0.160 0.165
02 April, 2012 Harris interactive 0.123 0.138 0.157
02 April, 2012 CSA 0.133 0.200 0.210
04 April, 2012 OpinionWay 0.122 0.146 0.147
07 April, 2012 IPSOS 0.137 0.137
11 April, 2012 LH2 0.110 0.102
11 April, 2012 CSA 0.150 0.176 0.182
12 April, 2012 BVA 0.124 0.138
12 April, 2012 TNS Sofres 0.110 0.120
14 April, 2012 IPSOS 0.112 0.101 0.119
15 April, 2012 IFOP 0.084 0.087 0.103
17 April, 2012 CSA 0.109 0.122 0.122
17 April, 2012 BVA 0.105 0.143 0.151
18 April, 2012 LH2 0.123 0.112
19 April, 2012 CSA 0.126 0.114 0.125
19 April, 2012 BVA 0.123 0.126 0.151
20 April, 2012 IFOP 0.076 0.081

Table 2: Statistically significant bias in french pre-election polls
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Statistical significance is, however, not very interesting in itself. More impor-
tantly, bias is relatively small in absolute terms. The average values of Bw for the
two-, three-, five, and eight-candidate codings are 0.055, 0.104, 0.122, and 0.132,
respectively. Put differently, the French pollsters did a reasonable job predicting
the outcome of the first round.

Individual outliers are noticeable, though. For example, the CSA polls in
late March and early April show the highest bias, through an overestimation
of Sarkozy (30%) and Mélenchon’s (15%) scores and underestimating Le Pen’s
(13%). However, this organisation’s scores come into line in later polls, even if
still biased, and indeed scores for CSA polls before our start-date were better (see
Figure 4).

3.2 Using B and Bw to Model Explanations of Polling Bias
Such outliers raise an important issue with individual polling organisations and
sources of bias. Much of the polling literature discusses the role of “house effects”
in causing consistent bias in one or more parties’ scores (Jackman, 2005; Fisher
et al., 2011), although a house effect could equally focus on average stability of
estimates over time. There are, however, at least three other potential causes of
bias which need to be controlled for to allow a robust estimation of their relative
strengths and of house effects. First, the number of days before the election should
capture any remaining fluctuations in public opinion in the campaign, which may
cause changes in intended vote or last-minute decisions. Averaging across surveys
should allow an estimate of the amount of convergence for this election. Secondly,
the sample size affects significance testing but as the simulations have shown,
Bw is also biased away from zero – the larger the sample size, the smaller the
bias, other things being equal. Lastly, even with stable sample size, we have
seen that candidate coding choices affect the significance and level of bias, with
smaller numbers of individual candidates being less prone to bias. For a multi-
party system, then, the use of B or Bw as the outcome allows us to model these
different sources of bias.

In Table 3, we apply this to the French presidential data. Each poll for which
we have full data constitutes an observation. The dependent variable is simply
the Bw score for each poll. The house effect is coded as a series of dummy vari-
ables for polling organisation, with polls by the Opinionway organisation as the
reference. The sample size, coding of number of candidates and length of time
to the election could be included as simple covariates. However, whilst the di-
rection of their expected effects is clear, their functional form is not necessarily
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linear. To account for this, we run a polynomial regression using Stata’s multi-
variable fractional polynomial command prefix. Fractional polynomials provide
a flexible yet parsimonious framework to accommodate different types of non-
linearity (Royston and Sauerbrei, 2008). We let the Royston-Sauerbrei algorithm
choose the optimal transformation for the three controls.15 Because of the stacked
data structure that includes four observations for each unit of analysis for, robust
standard errors are used to account for clustering.

Table 3 gives the model estimates. The three hypothesised causes of bias po-
tentially confounding house effects all reach significance in the expected direction.
Length of time to the election has a distinctly non-linear effect that is represented
by a quadratic and a cubic term (Figure 2), with greater accuracy in the final few
days of the campaign. Somewhat surprisingly, inaccuracy peaks three weeks be-
fore election day, with bias levels four and two weeks before the end of the cam-
paign being roughly comparable. This might be due to some campaign effects
on political opinion, which may later have returned to equilibrium. The peculiar
shape of the curve should not however be over-interpreted, as the marginal effect
of time is generally rather small.

Similarly, increasing sample size only very moderately reduces bias. As Table
3 shows, for every 1000 additional respondents, the Bw score is expected to reduce
by around 0.0217. One should still bear in mind that all sample sizes under study
are relatively large.16 For smaller samples, the effect of sample size would most
likely be more pronounced and non-linear.

Lastly, Figure 3 demonstrates the effect of model structure, with the fit across
the different candidate codings. In line with the individual Bw scores, there is a
more pronounced rise in inaccuracy as the candidate coding moves from two to
three, with a less steep increase as more and more minor candidates are coded
individually. This is also undoubtedly due to the downward weighting of minor
candidates in Bw’s calculation. Of course, this particular curve is a function of
the party system distribution – the relative sizes of each candidate’s vote share.
For different shares, the exact shape of the function will differ. However, it does
demonstrate that those using the Bw index should be aware of methodological
artefacts in their findings of more or less accuracy. To make such decisions in-
telligently, a common benchmark, such as a fractionalisation or effective number
index (e.g. Laakso and Taagepera, 1979) or a proportion of vote threshold might

15Following Royston and Sauerbrei, the transformed variables are centred to reduce collinearity.
The structure of the model itself remains linear-additive.

16N varies from 876 to 2555.
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Bw

candidates−2
− 0.05 -0.325∗∗∗

(0.0209)

N-1148 -0.0000217∗∗

(0.00000715)

(days/10)2
− 2.02 0.0201∗∗∗

(0.00458)

(days/10)3
− 2.87 -0.00596∗∗∗

(0.00159)

BVA 0.0375∗∗∗

(0.00858)

CSA 0.0504∗∗∗

(0.00729)

Harris 0.00317
(0.00766)

IFOP 0.0247∗

(0.0104)

IPSOS 0.0102
(0.00730)

LH2 0.0170∗

(0.00828)

TNS Sofres 0.00522
(0.00832)

Constant 0.107∗∗∗

(0.00575)
R2 0.755
N 128
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Polynomial regression of bias on number of candidates, sample size,
time, and polling company
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Figure 2: The marginal effect of number of days to the election on polling bias
(fractional polynomial effect)
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on polling bias (fractional polynomial effect)

be used to indicate the number of relevant competitors.17

4 Conclusion
In a period when polling accuracy is coming under increased scrutiny, both in
terms of polls’ ability to forecast elections (even if individual polls are not fore-
casts per se) and the underlying biases inherent in their method which cause inac-
curacy, the lack of a single index able to characterise polling accuracy for multi-
party systems is problematic. Though not the only reason for less study of multi-
party systems in the polling literature, the complexities of looking at multiple,
related indicators to track polling accuracy has certainly contributed to putting
these polls beyond the scope of more formalised approaches such as those found

17In the French example, the effective number of candidates was 4.8 (Evans, 2012, 124). That
would suggest coding five candidates plus “others”.
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in the literature on UK and US elections. Furthermore, in the wake of a US elec-
tion where the robust use of polling data by researchers like Nate Silver, Drew
Linzer and Simon Jackman publicly demonstrated the value of polling estimates
informing electoral commentary, the lack of a simple unified index which would
allow even retrospective review of overall polling performance in the majority of
the world’s democracies is a significant impediment to developing an understand-
ing of such opinion measures in political behaviour.

Not only has the lack of a measure reduced the capacity of analysts to under-
stand patterns in polling data; it has also meant there is no yardstick by which to
measure the performance of polling institutions in elections. In European democ-
racies where concerns over polls influencing voters via a feedback loop are such
that some commentators worry that they are degrading democracy (Italy’s pur-
ported sondocrazia, for example), the ability to identify the location and more
fundamentally the degree of inaccuracy is vital.

The B index of course cannot be used for ex ante forecasts of elections, in
keeping with all measures of predictive accuracy – an observed outcome is re-
quired. Morever, pre-election polls are not forecasts of actual election outcomes,
but rather snapshots of public opinion at points in time prior to the election. As
we have demonstrated, our measure allows researchers to track the evolution of
polling across time, and to use this measure as a dependent variable. Indeed, this
potential use was noted by Martin, Traugott and Kennedy’s for their two-party
index (2005, 352).

Inevitably the underlying mathematics of the multi-party measure are more
complex than the two-party measure, but the index itself, as well as the individ-
ual A′i scores, are easily estimated and interpreted. As with any index, choices
that the researcher makes in terms of number of individual candidates/parties to
retain and whether B or Bw is more appropriate may influence their substantive
findings. Replication by other researchers of these analyses, using different can-
didate or party groupings, will reveal the effect of such choices on conclusions
about accuracy.

Historically, measures of polling accuracy such as the Mosteller measures
have followed elections where the inaccuracy of pre-election polls was thought
to be problematic. There have been numerous instances in recent multi-party
elections in Europe and elsewhere of polls providing misleading trends (Schaffer
and Schneider, 2005; Callegaro and Gasperoni, 2008; Durand, 2008). We hope
that B’s use could provide an incentive for all polling organisations to supply the
requisite information for researchers to calculate the index, to allow transparency
in assessing polls’ relative performance across a campaign.
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Figure 4: Development of Bw over time for eight French pollsters

A Additional Figures

B Derivation of Standard Errors
In Equation (7) and (8) we demonstrate how A′i is related to the parameters
β1, β2, · · · βk−1 of the familiar MNL. Since these calculations are based on sur-
vey data, the βs and A′is should be treated as random vectors, whose variability is
of interest.

Because the underlying MNL does not involve any explanatory variables, β
could in principle be obtained by substituting the observed probabilities into (7)
and solving for the k − 1 unique βs (one β is always set to 0 as an identifying
restriction). However, the most convenient way to obtain β and the associated
variance-covariance matrix V is to rely on off-the-shelf maximum likelihood pro-
cedures for estimating the parameters of the MNL, which are available in all major
statistical packages.

For large samples, β2, · · · βk are distributed multivariate normal. Their
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variance-covariances matrix V can be estimated by the inverse of the informa-
tion matrix (Agresti, 2002, 193), which is the negative expectation of the matrix
of second-order partial derivatives of the likelihood function with respect to the
parameters (Hesse Matrix). In that sense, maximum likelihood estimation gener-
ates the complete variance-covariance matrix as a byproduct.

Since A′1, A
′
2, · · · A

′
k are defined as non-linear combinations of the βs (see Equa-

tion (8)), the derivation of their standard errors is by no means straightforward,
although they should be approximately normal as well. To see why this is the
case, consider (without loss of generality) the calculation of A′i for a three party
system. Taking the first party as the reference category (for which β1 is set to 0 so
that exp(β1) = 1), A′1, A

′
2 and A′3 are defined as

A′1 = ln

 1
1+exp(β2)+exp(β3)

1 − 1
1+exp(β2)+exp(β3)

×
1 − v1

v1

 (19)

A′2 = ln

 exp(β2)
1+exp(β2)+exp(β3)

1 − exp(β2)
1+exp(β2)+exp(β3)

×
1 − v2

v2

 (20)

A′3 = ln

 exp(β3)
1+exp(β2)+exp(β3)

1 − exp(β3)
1+exp(β2)+exp(β3)

×
1 − v3

v3

 . (21)

Since both β2 and β3 are normally distributed, exp(β2) and exp(β3) have log-
normal distributions, whose location and shape are governed by the respective
mean and variance of the underlying normal distribution. For the distribution of
the sum of log-normally distributed random variables (i.e. exp(β2)+exp(β3) in this
case), there is no closed form expression, though it can often be approximated as
yet another log-normal distribution. If this approximation holds, the inner fraction
also has a log-normal distribution, because the ratio of two log-normal distribu-
tions as well as the inverse of a single log-normal distribution are also distributed
log-normal.

Things are further complicated by the addition of 1 in the denominator of the
inner fractions, the covariation between β1 and β2, the difference in the denom-
inator of the outer fraction, and the multiplication by the odds of the vote. In
short, while there is reason to believe that the expression within the parentheses
is distributed approximately log-normal, rendering the distribution of A′i itself ap-
proximately normal, one cannot be sure.

We therefore carried out a number of numerical simulations based on the fic-
titious party system (2) and (3) (see Note 10). For each party system, we con-
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No v p β2 β3 V
(1)

(
2
5 ,

2
5 ,

1
5

) (
2
5 ,

2
5 ,

1
5

)
−0.000 −0.693 0.005

0.003 0.008

(2)
(

11
25 ,

28
75 ,

14
75

)
−0.165 −0.856 0.005

0.002 0.008

(3)
(

1
2 ,

1
3 ,

1
6

)
−0.406 −1.097 0.005

0.002 0.008

(4)
(

9
25 ,

32
75 ,

16
75

)
0.171 −0.525 0.005

0.003 0.007

(5)
(

3
10 ,

7
15 ,

7
30

)
0.443 −0.253 0.005

0.003 0.008

(6)
(

39
100 ,

39
100 ,

11
50

)
0.000 −0.573 0.005

0.003 0.007

(7)
(

3
8 ,

3
8 ,

1
4

)
0.000 −0.405 0.005

0.003 0.007

(8)
(

41
100 ,

41
100 ,

9
50

)
0.000 −0.823 0.005

0.002 0.008

(9)
(

17
40 ,

17
40 ,

3
20

)
−0.000 −1.041 0.005

0.002 0.009

(10)
(

1
2 ,

1
4 ,

1
4

) (
1
2 ,

1
4 ,

1
4

)
−0.693 −0.693 0.006

0.002 0.006

(11)
(

11
20 ,

9
40 ,

9
40

)
−0.894 −0.894 0.006

0.002 0.006

(12)
(

5
8 ,

3
16 ,

3
16

)
−1.201 −1.207 0.007

0.002 0.007

(13)
(

9
20 ,

11
40 ,

11
40

)
−0.492 −0.492 0.006

0.002 0.006

(14)
(

3
8 ,

5
16 ,

5
16

)
−0.181 −0.184 0.006

0.003 0.006

(15)
(

29
60 ,

29
120 ,

11
40

)
−0.691 −0.563 0.006

0.002 0.006

(16)
(

11
24 ,

11
48 ,

5
16

)
−0.693 −0.381 0.007

0.002 0.005

(17)
(

31
60 ,

31
120 ,

9
40

)
−0.695 −0.832 0.006

0.002 0.006

(18)
(

13
24 ,

13
48 ,

3
16

)
−0.693 −1.064 0.006

0.002 0.007

Table 4: β1, β2, and V under 2 × 9 different types of bias

sidered nine different scenarios: no bias as well as under-/overrepresentation of
support for the biggest/smallest party by factors of 1

10 and 1
4 , respectively. The

missing/superfluous support was taken/given to the other parties according to their
true support in the population. Put differently, we simulated the more interesting
case of concentrated bias, since diffuse bias comes close to no bias at all.

Table B lists the 2×9 different scenarios we were investigating, and the values
for β2 and β3 which are implied by p, along with their variance-covariance matrix
V for n = 1000. Under each scenario, we drew 50000 values from the joint
distribution of β2 and β3 (given V), and calculated A′1, A′2 and A′3. This resulted in
54 simulated sampling distributions for our measure. Given the very large number
of simulated observations, we applied the skewness and kurtosis test to detect
deviations from normality (D’Agostino, Belanger and D’Agostino, 1990).18

18Stata’s sktest implements an adjustment of the original test suggest by Royston (1991).
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Not withstanding the very large sample size, the test failed to reject the null
hypothesis of normality (see Table B) in each instance. The lowest p-value for
the omnibus test was 0.74. P-values for the component kurtosis test are somewhat
smaller but do not go below 0.48. These results are further confirmed by a visual
inspection of the quantile plots.

Moreover, the simulated sampling distributions are neatly centred on their ex-
pected theoretical value, i.e. there is no bias (see the leftmost column in each panel
of Table B). As an additional safeguard, we ran another set of simulations using
the same bias factors on two fictitious six party systems (5) and (6), resulting in a
further 108 simulated sampling distributions of A′i (not shown as a table). Again,
none of the omnibus tests for normality has a p-value lower than 0.05, some of the
component kurtosis tests do, hinting at tails that are slightly heavier than normal.
In each case, however, the deviation is tiny, i.e. less than 0.05. We are there-
fore confident that A′i is approximately normally distributed under a wide range of
conditions, and that classical hypothesis tests and confidence intervals are valid.

This leaves the problem of finding a computationally efficient way to estimate
the sampling variance of A′1, A

′
2, · · · A

′
k for a given data set. Fortunately, using the

delta method (Agresti, 2002, 73-74, ch. 14.1) it is easy to come up with good
approximations of these quantities.

The delta method, whose foundations were laid in the 1940s by Cramér
(Oehlert, 1992), approximates the expectation (or higher moments) of some func-
tion g(·) of a random variable X by relying on a (truncated) Taylor series expan-
sion. More specifically, Agresti (2002, 578) shows that (under weak conditions)
for some parameter θ that has an approximately normal sampling distribution with
variance σ2/n, the sampling distribution of g(θ) is also approximately normal with
variance [g′(θ)]2σ2/n, since g(·) is approximately linear in the neighbourhood of
θ. The delta method can be generalised to the case of a multivariate normal ran-
dom vector (Agresti, 2002, 579) such as the joint sampling distribution of some
set of parameter estimates.

Stata’s procedure nlcom is a particularly versatile and powerful imple-
mentation of the delta method. As a post-estimation command, nlcom ac-
cepts symbolic references to model parameters and computes sampling variances
for their linear and non-linear combinations and transformations. Our add-on
surveybias internally makes the required calls to nlcom in order to calcu-
late approximate standard errors for the A′is.

The approximation works very well, as can be gleaned from the rightmost
column in each panel in Table B: in 54 experiments, the approximated standard
error is never off by more than 0.2 per cent.

25



N
o

A
′ 1

A
′ 2

A
′ 3

µ
−

A
′ 1

p 1
p 2

p 3
σ
/σ̂

µ
−

A
′ 2

p 1
p 2

p 3
σ
/σ̂

µ
−

A
′ 3

p 1
p 2

p 3
σ
/σ̂

(1
)
−

0.
00

1
0.

99
0.

92
0.

99
1.

00
0
−

0.
00

1
0.

63
0.

63
0.

79
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

78
1.

00
0

(2
)
−

0.
00

1
0.

98
0.

90
0.

99
1.

00
0
−

0.
00

1
0.

67
0.

64
0.

82
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

79
1.

00
0

(3
)
−

0.
00

1
0.

97
0.

87
0.

99
1.

00
0
−

0.
00

1
0.

72
0.

67
0.

86
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

79
1.

00
0

(4
)
−

0.
00

1
1.

00
0.

94
1.

00
1.

00
0
−

0.
00

1
0.

59
0.

63
0.

77
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

78
1.

00
0

(5
)
−

0.
00

1
0.

99
0.

97
1.

00
1.

00
0
−

0.
00

1
0.

53
0.

65
0.

74
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

78
1.

00
0

(6
)
−

0.
00

1
0.

98
0.

90
0.

99
1.

00
0
−

0.
00

1
0.

61
0.

63
0.

78
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

78
1.

00
0

(7
)
−

0.
00

1
0.

97
0.

88
0.

99
1.

00
0
−

0.
00

1
0.

59
0.

63
0.

77
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

78
1.

00
0

(8
)
−

0.
00

1
1.

00
0.

93
1.

00
1.

00
0
−

0.
00

1
0.

64
0.

63
0.

80
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

79
1.

00
0

(9
)
−

0.
00

1
0.

99
0.

96
1.

00
1.

00
0
−

0.
00

1
0.

67
0.

65
0.

82
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

79
1.

00
0

(1
0)
−

0.
00

1
0.

89
0.

71
0.

92
1.

00
0
−

0.
00

1
0.

71
0.

66
0.

85
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

78
1.

00
0

(1
1)
−

0.
00

1
0.

88
0.

68
0.

91
1.

00
0
−

0.
00

1
0.

75
0.

69
0.

88
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

78
1.

00
0

(1
2)

0.
00

1
0.

87
0.

66
0.

89
0.

99
9

0.
00

1
0.

82
0.

74
0.

92
1.

00
0
−

0.
00

6
0.

94
0.

49
0.

79
0.

99
8

(1
3)
−

0.
00

1
0.

91
0.

74
0.

94
1.

00
0
−

0.
00

1
0.

66
0.

64
0.

81
1.

00
0
−

0.
00

1
0.

95
0.

48
0.

78
1.

00
0

(1
4)

0.
00

1
0.

93
0.

79
0.

96
1.

00
0

0.
00

1
0.

59
0.

63
0.

77
1.

00
0
−

0.
00

4
0.

95
0.

48
0.

78
0.

99
9

(1
5)
−

0.
00

1
0.

88
0.

69
0.

91
1.

00
0
−

0.
00

1
0.

69
0.

65
0.

83
1.

00
0
−

0.
00

1
0.

95
0.

48
0.

78
1.

00
0

(1
6)
−

0.
00

1
0.

86
0.

66
0.

89
1.

00
0
−

0.
00

1
0.

68
0.

64
0.

82
1.

00
0
−

0.
00

1
0.

95
0.

48
0.

78
1.

00
0

(1
7)
−

0.
00

1
0.

91
0.

73
0.

94
1.

00
0
−

0.
00

1
0.

72
0.

67
0.

86
1.

00
0
−

0.
00

1
0.

94
0.

49
0.

78
1.

00
0

(1
8)

0.
00

1
0.

93
0.

78
0.

96
0.

99
9

0.
00

1
0.

75
0.

69
0.

88
1.

00
0
−

0.
00

6
0.

94
0.

49
0.

79
0.

99
8

p 1
:t

es
tb

as
ed

on
sk

ew
ne

ss
;

p 2
:t

es
tb

as
ed

on
ku

rt
os

is
;

p 3
:χ

2
om

ni
bu

s
te

st

26



Variance and covariances for B and Bw are also approximated and posted by
our add-on, although the respective distributions of these quantities are folded-
normal and therefore skewed, as explained in section 2.4. Additionally, the full
(approximate) matrix of parameter variances and covariances is stored for further
post-estimation analyses.

C Statistical Power
The statistical power of the χ2-test is a function of sample size, magnitude of
bias, and distribution of bias amongst parties. To assess how badly a poll must
be biased in practice to be flagged up by the test, we ran another series of simu-
lations. For party systems (2), (3), (5), and (6), we simulated that support for the
biggest/smallest party was deflated/inflated by a factor of 10, 15, and 25 per cent,
respectively. Under each of these 48 scenarios, we sampled from the appropriate
biased multinomial distribution. The sample size was set to 1000, which seems to
be the lower limit for commercial polls. We then tested against the null hypoth-
esis of no bias based on both Pearson’s χ2 and the likelihood ratio G2, using the
conventional criterion of p ≤ 0.05. For each scenario, this procedure was carried
out 10000 times.

Table 5 shows the results for the three-party systems. First, note that results
are virtually identical for Pearson’s χ2 and the likelihood ratio G2, and that the
direction (upward/downward) does not matter (as it should). Second, even for
moderately large values of Bw in the range of 0.12 to 0.15, the null hypothesis
is rejected in the vast majority of cases, comfortably exceeding the conventional
threshold of 0.8. If the total bias Bw is smaller than 0.1, however, the power of the
test is considerably lower. If, for instance, support for smallest party in system (2)
is systematically biased from 20 to 22 per cent in the polls, the test will miss this
bias in roughly two out of three applications.

Our simulations for the six-party systems by and large confirm these find-
ings (see Table 6). The rejection rates for moderate bias are somewhat lower yet
still acceptable, while strong bias (Bw exceeding 0.2) is detected with certainty.
Note, however, that even substantial bias in the measurement of support for small
parties hardly affects Bw (under the somewhat unrealistic assumption that the re-
sulting bias in the measurement of other parties is distributed proportionally), and
is rarely picked up by the test (see e. g. the last line in Table 6). One should,
however, remember that even this comparatively strong effect is equivalent of a
measurement that is biased from 5 to 6.25 per cent. While the detection of bias
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system most affected
party

bias Bw χ2 ≥ χ2
crit G2 ≥ G2

crit

(2) biggest -0.25 0.33 1.00 1.00
(2) biggest -0.15 0.19 0.95 0.95
(2) biggest -0.10 0.13 0.64 0.64
(2) biggest 0.10 0.13 0.63 0.63
(2) biggest 0.15 0.19 0.94 0.94
(2) biggest 0.25 0.32 1.00 1.00
(2) smallest -0.25 0.15 0.97 0.97
(2) smallest -0.15 0.09 0.57 0.56
(2) smallest -0.10 0.06 0.29 0.28
(2) smallest 0.10 0.06 0.27 0.28
(2) smallest 0.15 0.09 0.54 0.55
(2) smallest 0.25 0.14 0.93 0.94
(3) biggest -0.25 0.41 1.00 1.00
(3) biggest -0.15 0.25 0.99 0.99
(3) biggest -0.10 0.16 0.82 0.82
(3) biggest 0.10 0.17 0.82 0.81
(3) biggest 0.15 0.25 0.99 0.99
(3) biggest 0.25 0.44 1.00 1.00
(3) smallest -0.25 0.20 0.99 0.99
(3) smallest -0.15 0.12 0.72 0.70
(3) smallest -0.10 0.08 0.36 0.35
(3) smallest 0.10 0.08 0.35 0.35
(3) smallest 0.15 0.12 0.68 0.68
(3) smallest 0.25 0.19 0.99 0.99

Table 5: Statistical Power: Three-Party Systems
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system most affected
party

bias Bw χ2 ≥ χ2
crit G2 ≥ G2

crit

(5) biggest -0.25 0.38 1.00 1.00
(5) biggest -0.15 0.23 0.97 0.98
(5) biggest -0.10 0.15 0.68 0.69
(5) biggest 0.10 0.16 0.67 0.66
(5) biggest 0.15 0.24 0.98 0.97
(5) biggest 0.25 0.41 1.00 1.00
(5) smallest -0.25 0.07 0.54 0.50
(5) smallest -0.15 0.04 0.19 0.18
(5) smallest -0.10 0.03 0.11 0.10
(5) smallest 0.10 0.03 0.10 0.11
(5) smallest 0.15 0.04 0.18 0.19
(5) smallest 0.25 0.07 0.46 0.49
(6) biggest -0.25 0.21 1.00 0.99
(6) biggest -0.15 0.12 0.69 0.68
(6) biggest -0.10 0.08 0.32 0.32
(6) biggest 0.10 0.08 0.30 0.30
(6) biggest 0.15 0.12 0.64 0.64
(6) biggest 0.25 0.20 0.99 0.99
(6) smallest -0.25 0.03 0.25 0.22
(6) smallest -0.15 0.02 0.11 0.09
(6) smallest -0.10 0.01 0.07 0.07
(6) smallest 0.10 0.01 0.08 0.08
(6) smallest 0.15 0.02 0.10 0.11
(6) smallest 0.25 0.03 0.23 0.26

Table 6: Statistical Power: Six-Party Systems
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in highly fragmented party systems clearly requires larger samples, we are rea-
sonably sure that our test has sufficient power to detect substantively relevant bias
under a wide range of conditions.

References
Agresti, Alan. 2002. Categorical Data Analysis. 2 ed. Hoboken: John Wiley.

Aitchison, John. 1982. “The Statistical Analysis of Compositional Data (with
Discussion).” Journal of the Royal Statistical Society, Series B 44(2):139–177.

Alvarez, R. Michael and Jonathan Nagler. 1998. “When Politics and Models Col-
lide. Estimating Models of Multiparty Elections.” American Journal of Political
Science 42:55–96.

Bacon-Shone, John. 2011. A Short History of Compositional Data Analysis. In
Compositional Data Analysis. Theory and Applications, ed. Vera Pawlowsky-
Glahn and Antonella Buccianti. Chichester: Wiley pp. 1–11.

Callegaro, Mario and Giancarlo Gasperoni. 2008. “Accuracy of Pre-Election Polls
for the 2006 Italian Parliamentary Election: Too Close to Call.” International
Journal of Public Opinion Research 20(2):148–170.

Cheng, Simon and J. Scott Long. 2007. “Testing for IIA in the Multinomial Logit
Model.” Sociological Methods & Research 35(4):583–600.

D’Agostino, Ralph B., Albert Belanger and Ralph B. D’Agostino, Jr. 1990. “A
Suggestion for Using Powerful and Informative Tests of Normality.” The Amer-
ican Statistician 44(4):316–321.

Dow, Jay K. and James W. Endersby. 2004. “Multinomial Probit and Multinomial
Logit. A Comparison of Choice Models for Voting Research.” Electoral Studies
23:107–122.

Durand, Claire. 2008. “The Polls of the 2007 French Presidential Campaign: Were
Lessons Learned from the 2002 Catastrophe?” International Journal of Public
Opinion Research 20(3):275–298.

Evans, Jocelyn. 2012. “The Sound Foundations of a Socialist Victory.” Renewal
20(2–3):123–128.

30



Fisher, Stephen D., Robert Ford, Will Jennings, Mark Pickup and Christopher
Wlezien. 2011. “From Polls to Votes to Seats: Forecasting the 2010 British
General Election.” Electoral Studies 30(2):250–257.

Jackman, Simon. 2005. “Pooling the polls over an election campaign.” Australian
Journal of Political Science 40(4):499–517.

Kropko, Jonathan. 2010. A Comparison of Three Discrete Choice Estimators
(Unpublished Dissertation Chapter). University of North Carolina, Chapel Hill.
URL: http://www.unc.edu/ kropko/paper1.pdf

Laakso, Markku and Rein Taagepera. 1979. “‘Effective’ Number of Parties.
A Measure with Application to West Europe.” Comparative Political Studies
12(1):3–27.

Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent
Variables. Thousand Oaks, London, New Delhi: Sage.

Luce, R Duncan. 1959. Individual Choice Behavior. A Theoretical Analysis. New
York: John Wiley & Sons.

Martin, Elizabeth A., Michael W. Traugott and Courtney Kennedy. 2005. “A
Review and Proposal for a New Measure of Poll Accuracy.” Public Opinion
Quarterly 69(3):342–369.

McFadden, Daniel. 1973. Conditional Logit Analysis of Qualitative Choice Be-
haviour. In Frontiers of Econometrics, ed. Paul Zarembka. New York: Aca-
demic Press pp. 105–142.

McLean, Iain. 1995. “Independence of irrelevant alternatives before Arrow.”
Mathematical Social Sciences 30(2):107–126.

Mosteller, Frederick, Herbert Hyman, Philip McCarthy, Eli Marks and David Tru-
man. 1949. The Pre-Election Polls of 1948: Report to the Committee on Anal-
ysis of Pre-Election Polls and Forecasts. New York: Social Science Research
Council.

Oehlert, Gary W. 1992. “A Note on the Delta Method.” The American Statistician
46(1):27–29.

Pawlowsky-Glahn, Vera and Antonella Buccianti, eds. 2011. Compositional Data
Analysis. Theory and Applications. Chichester: Wiley.

31



Pearson, Karl. 1897. “Mathematical Contributions to the Theory of Evolution.
On a Form of Spurious Correlation Which May Arise When Indices Are Used
in the Measurements of Organs.” Proceedings of the Royal Society of London
60:489–502.

Ray, Paramesh. 1973. “Independence of Irrelevant Alternatives.” Econometrica
41(5):987–991.

Royston, Patrick. 1991. “sg3.5: Comment on sg3.4 and an Improved D’Agostino
Test.” Stata Technical Bulletin 3:23–24.
URL: http://stata-press.com/journals/stbcontents/stb3.pdf

Royston, Patrick and Willi Sauerbrei. 2008. Multivariable Model-building: A
Pragmatic Approach to Regression Analysis Based on Fractional Polynomials
for Modelling Continuous Variables. Chichester, UK: Wiley.

Schaffer, Lena-Maria and Gerald Schneider. 2005. “Die Prognosegüte von
Wahlbörsen und Meinungsumfragen zur Bundestagswahl 2005.” Politische
Vierteljahresschrift 46(4):674–681.

Train, Kenneth. 2009. Discrete Choice Methods with Simulation. 2 ed. Cam-
bridge: Cambridge University Press.

Whitten, Guy D. and Harvey D. Palmer. 1996. “Heightening Comparativists’ Con-
cern for Model Choice: Voting Behavior in Great Britain and the Netherlands.”
American Journal of Political Science 40(1):231–260.

32


