Matching

Kai Arzheimer | Vorlesung Forschungsmethoden

Outline

Einführung/Wiederholung
Matching?
Matching: Basics
Matching: Praxis
Beispiele
Zusammenfassung

Einführung/Wiederholung

Wiederholung: Kontrafaktische Definition von Kausalität

- · Gedankenexperiment:
 - 1. Beobachte Wert Y_{io} an Objekt i in Welt wo $X_i = 0$; z.B. $X \equiv$ Arbeitslosigkeit, $Y \equiv$ Rechtsextremismus, $i \equiv$ Petra Musterfrau
 - 2. Beobachte Y_{i1} in einer "closest possible world" wo $X_i = 1$ (ansonsten keine Veränderungen)
 - 3. Kausaler Effekt von X auf Y = $Y_{i|X=0} Y_{i|X=0}$
- Kausaler Effekt für einen einzelnen Fall
- Randomisiertes Experiment als beste Annäherung in Sozialwissenschaften

Warum funktionieren randomisierte Experimente (meistens)?

- Randomisierung → Experimentalgruppe und Kontrollgruppe homogen bezüglich aller denkbaren Kovariaten (große Gruppen)
- Mittelwertunterschiede in Y unverzerrte Schätzung für kausalen Effekt von $X \rightarrow Y \dots$
- ... in typischen Fällen

Was sind mögliche Probleme beim randomisierten Experiment?

- Compliance/cross-over
 - Design nicht mehr balanciert
 - · Wenn nicht zufällig, keine Randomisierung mehr
- Gültigkeit von SUTVA (Stable Unit Treatment Value Assumption)
 - Stable Unit Treatment Value Assumption
 - Es darf nur eine Variante des Treatments geben (keine Variation des Mechanismus innerhalb Experimentalgruppe)
 - Einheiten bzw. deren Zahl dürfen sich nicht gegenseitig beeinflussen
 - Beispiel für Problem: Berufsqualifikation

Was sind die Probleme des Ex-Post-Facto Designs?

- Gruppen sind nicht gleich groß (oversampling)
- Kontrollgruppe mit größerer Streuung → Extrapolation
- Anfälligkeit gegen Fehlspezifikation des Modells
- Selbstselektion
 - X=1 und höherer Wert von Y: beides Effekt einer Hintergrundvariable
 - Selbst wenn eigenständiger kausaler Effekt δ auf Y existiert ...
 - Möglicherweise stärker/schwächer bei Personen, die sich typischerweise in X=1 selektieren
 - Interaktion/indirekter Drittvariableneffekt

Average Treatment Effect etc.

- Average Treatment Effect ATE von δ : $E[\delta] = E[Y^1] E[Y^0]$
- · Problem:
 - ATE (gewichtetes) Mittel von Effekt für Experimental- und Kontrollgruppe
 - Was ist, wenn sich Effekt in beiden Gruppen unterscheidet?
 - ATT: $E[\delta|D=1] = E[Y^1 Y^0|D=1]$
 - ATC: $E[\delta|D=0] = E[Y^1 Y^0|D=0]$
 - Randomisiertes Experiment: Warum sollte sich Effekt zwischen Gruppen unterscheiden?
 - · Observational Data: Hilfsannahmen
- Wenn Annahmen falsch, Über-/Unterschätzung des kausalen Effekts

Average Treatment Effect for the Treated

Manchmal nur ATT (oder ATC) interessant

Beispiel Butterfly Ballots

- Präsidentschaftswahl 2000: Manche counties in Florida verwenden "Butterfly Ballots"
- In diesen counties ungewöhnlich viele Stimmen für Buchanan
- · Kausaler Effekt?
- · Wie hoch wäre der Stimmenanteil für Buchanan
 - in diesen counties gewesen
 - Wenn anderes Format?

Matching?

Was erhofft man sich von matching?

Theorie ...

- Bessere Balancierung der Daten
- Realistischerer Vergleich/weniger Extrapolation
- Geringerer Modellabhängigkeit der Schätzungen für den fokalen Effekt
- Annäherung an Schätzung kausaler Effekte mit observational data

Was erhofft man sich von matching?

Theorie ...

- Bessere Balancierung der Daten
- · Realistischerer Vergleich/weniger Extrapolation
- Geringerer Modellabhängigkeit der Schätzungen für den fokalen Effekt
- Annäherung an Schätzung kausaler Effekte mit observational data

... und Praxis

The Gathering of the Manna by James Tissot

Was ist matching?

- Ausschluss von Fällen (i.d.R.) aus der "Kontrollgruppe"
- Ziele:
 - Daten balanciert bezogen auf (potentiell) kausale unabhängige Variable (treatment)
 - Korrelation zwischen treatment und anderen unabhängigen Variablen aufgebrochen
- Oberbegriff für eine Vielzahl von Methoden
- Einfachste Variante: Exaktes 1:1 matching
- Alternative Verfahren verlieren weniger Fälle

Was genau ist Balancierung?

- Wir haben eine Reihe von potentiell relevanten Drittvariablen (X)
- Balancierung:
 - Nicht nur der Mittelwert ...
 - ... sondern die Dichte (Verteilung) dieser Variablen ist in Experimental- und Kontrollgruppe gleich
 - · Univariat und multivariat
- Verschiedene Matching-Verfahren → verschiedene Kriterien/Ansätze für Balancierung

(Vorsicht: Post-treatment Bias)

- King: "Controlling away for the consequences of treatment, causal ordering among predictors ambiguous"
- Beispiel:
 - Kausaler Effekt PI → Wahlentscheidung
 - Für Rasse kontrollieren
 - · Aber nicht für Wahlabsicht unmittelbar vor Wahl
- Oft ist die Lage unklar
- Demokratisierung → Bürgerkriege
 - Für GDP kontrollieren wg GDP \rightarrow Demokratisierung
 - Aber: Wenn Demokratisierung → GDP, postreatment bias
- Mehr dazu hier gking.harvard.edu/talks/bigprobP.pdf

Warum funktioniert matching?

- Ziel: Reduktion von bias und Varianz
- · Normalerweise: "first principle of statistics: more data is better"
- Gilt aber nur, wenn wir richtiges Modell/richtigen Schätzer haben
- Bei observational data Hauptproblem bias, nicht Varianz
- Ausschluß von Fällen bis zu einem Optimum

Warum nicht exaktes matching?

- 1:1 vermutlich ineffizient
- "Curse of dimensionality" auch wenn 1:m
- In Politikwissenschaft momentan am weitesten verbreitet: propensity score matching
- (Mehr dazu gleich)

Matching vs randomisierte Experimente

Experimente

- · Idealerweise zufällige Auswahl
- · Zufällige Selektion
- Idealerweise (gleich) große Gruppen
- (In Erwartung): perfekte
 Balancierung für alle denkbaren X

Matching vs randomisierte Experimente

Experimente

- Idealerweise zufällige Auswahl
- · Zufällige Selektion
- Idealerweise (gleich) große Gruppen
- (In Erwartung): perfekte
 Balancierung für alle denkbaren X

Matching

- Hoffentlich zufällige Auswahl
- Große Gruppen, aber Symmetrie?
- Selbstselektion
- Nachträgliche Balancierung für einige X
- Nicht grundsätzlich von multivariater Regression verschieden

Wie funktioniert propensity score matching?

PSM

- Grundidee: Fälle haben unterschiedliche Wahrscheinlichkeit (propensity), in treatment zu landen
- Schätze propensity auf Basis von X (Logit, alle Fälle)
- Balanciere Sample so, daß Verteilung von propensity für treatment und Kontrolle gleich
- (Indirekte Balancierung über Vielzahl von Variablen)
- Korrelation zwischen treatment und X aufgehoben, Unterschiede in Y (hoffentlich) treatment zurechenbar

Coarsened Exact Matching (CEM) als Alternative?

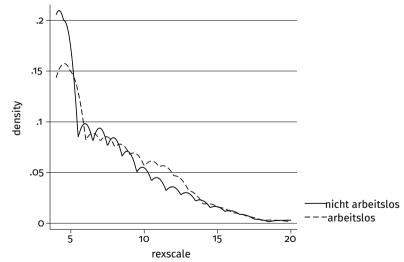
- Iacus et al. 2011: Größte Probleme bias und Modellabhängigkeit
- Oft wird balance für manche X verbessert, für andere verschlechtert → Schrauberei
- Coarsening: X-Variablen zu (inhaltlich sinnvollen) Kategorien zusammenfassen (z.B. Schulbildung)
- Exaktes matching mit diesen "coarsened variables"; Ausschluß von Fällen, die nicht gut zu matchen sind
- Anschließend normales Modell (z.B.) Regression mit ursprünglichen Variablen als Kontrollvariablen
- In Computersimulationen besser, schneller, flexibler als existierende Techniken

Coarsened Exact Matching (CEM) als Alternative?

- Iacus et al. 2011: Größte Probleme bias und Modellabhängigkeit
- Oft wird balance für manche X verbessert, für andere verschlechtert → Schrauberei
- Coarsening: X-Variablen zu (inhaltlich sinnvollen) Kategorien zusammenfassen (z.B. Schulbildung)
- Exaktes matching mit diesen "coarsened variables"; Ausschluß von Fällen, die nicht gut zu matchen sind
- Anschließend normales Modell (z.B.) Regression mit ursprünglichen Variablen als Kontrollvariablen
- In Computersimulationen besser, schneller, flexibler als existierende Techniken
- · What's next?

Software

- R: matchit (King und Freunde, Vielzahl von Prozeduren inkl. CEM)
- Stata
 - psmatch2 (Nichols)
 - cem (King und Freunde)



MATCHING? Matching: Praxis

- . * Einfacher Mittelwertunterschied
- . reg rexscale arbeitslos

Source	SS	df		MS		${\tt Number\ of\ obs}$	=	2752
						F(1, 2750)	=	3.80
Model	45.8751965	1	45.8	751965		Prob > F	=	0.0512
Residual	33160.3744	2750	12.	058318		R-squared	=	0.0014
						Adj R-squared	=	0.0010
Total	33206.2496	2751	12.0	706106		Root MSE	=	3.4725
rexscale	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
arbeitslos _cons	.3374962 7.064545	.1730 .0730		1.95 96.76	0.051 0.000	0017872 6.92138		6767795

```
. * Propensity score matching
. * Arbeitslosigkeit vorhersagen
. logit arb male alter bildung ost
Iteration 0: log likelihood = -1576.285
Iteration 1: log likelihood = -1492.1533
Iteration 2:
             log likelihood = -1489.0855
             log likelihood = -1489.0801
Iteration 3:
Iteration 4:
             log likelihood = -1489.0801
Logistic regression
                                                Number of obs
                                                                       3,398
                                                LR chi2(4)
                                                                       174.41
                                                Prob > chi2
                                                                        0.0000
Log likelihood = -1489.0801
                                                Pseudo R2
                                                                        0.0553
  arheitslos
                   Coef.
                           Std. Err.
                                                P>|z|
                                                          [95% Conf. Interval]
                                           Z
       male
                 .0524309
                            .0929082
                                        0.56
                                                0.573
                                                         -.1296659
                                                                      .2345277
      alter
                -.0311126
                          .002903
                                      -10.72
                                                0.000
                                                         -.0368024
                                                                     -.0254229
     bildung.
                -.2130927
                           .0617395
                                                          -.3341
                                                                     -.0920855
                                       -3.45
                                               0.001
                 .7822706
                           .0957406
                                        8.17
                                                0.000
                                                          .5946224
                                                                      .9699188
         ost
       cons
                 .0382322
                            .2105266
                                        0.18
                                               0.856
                                                         -.3743924
                                                                      .4508568
```

[.] predict propensity
(option pr assumed; Pr(arbeitslos))
(71 missing values generated)

. * PS matching

. psmatch2 arb, pscore(propensity) out(rexscale)

There are observations with identical propensity score values.

The sort order of the data could affect your results.

Make sure that the sort order is random before calling psmatch2.

Variable	Sample	Treated	Controls	Difference	S.E.	T-stat
rexscale		7.40368852 7.40368852		.335034505 .540983607	.173877766 .283377311	1.93

Note: S.E. does not take into account that the propensity score is estimated.

psmatch2: Treatment assignment	psmatch2: Common support On suppor	Total		
Untreated Treated	2,214 488	2,214 488		
Total	2,702	2,702		

```
. * Coarsened exact matching - Vorbereitung
. cem alter bildung ost male, treatment(arb)
Matching Summary:
Number of strata: 163
Number of matched strata: 97
             0
                 1
     A11
          2870
                 599
 Matched 2290
                597
Unmatched 580
Multivariate L1 distance: .1993368
Univariate imbalance:
              L1
                      mean
                                min
                                          25%
                                                    50%
                                                              75%
                                                                        max
 alter .10521 -.23474
                                                                        -3
bildung
         4.9e-16 -1.4e-14
                                  0
                                            0
                                                      Θ
                                                                0
   ost
         2.8e-16 -2.2e-16
                                  0
                                            0
                                                      Θ
                                                                         0
  male 4.4e-16 -1.1e-16
                                   Θ
                                            0
                                                      Θ
                                                                Θ
                                                                         0
```

- . * Coarsened exact matching Auswertung
- . reg rexscale arb alter bildung ost male [pw=cem_weights]
 (sum of wgt is 2.2628e+03)

Linear regression

Number of obs = 2271 F(5, 2265) = 38.43 Prob > F = 0.0000 R-squared = 0.0924 Root MSE = 3.2718

rexs	scale	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
arbeit	tslos	.2685681	.1852787	1.45	0.147	0947657	.6319019
ā	alter	0194236	.0067362	-2.88	0.004	0326333	0062139
bil	Ldung	-1.372526	.107456	-12.77	0.000	-1.583248	-1.161803
	ost	.7271412	.1816283	4.00	0.000	.3709658	1.083317
	male	.4850891	.1692314	2.87	0.004	.1532243	.8169539
	_cons	10.04662	.4455583	22.55	0.000	9.172874	10.92036

- . * Normale Regression
- . reg rexscale arb alter bildung ost male

Source	SS	df	MS		Number of obs		2702
Model Residual	2977.59488 29708.327		.1.0194091		F(5, 2696) Prob > F R-squared	=	54.04 0.0000 0.0911
Total	32685.9219	2701	12.101415		Adj R-squared Root MSE	=	0.0894 3.3195
rexscale	Coef.	Std. E	r. t	P> t	[95% Conf.	Int	terval]
arbeitslos alter bildung ost male _cons	.2397376 .0037525 -1.216469 .4351661 .4684388 8.891038	.170948 .00396 .083562 .1373 .127923	0.95 22 -14.56 88 3.17 3.66	0.161 0.344 0.000 0.002 0.000 0.000	0954651 0040202 -1.380321 .1657854 .2176003 8.266499	-1	5749403 5115253 .052616 7045469 7192773 .515577

Beispiele

Gilligan/Sergenti 2008: Do UN Interventions Cause Peace?

"Previous statistical studies of the effects of UN peacekeeping have generally suggested that UN interventions have a positive effect on building a sustainable peace after civil war. Recent methodological developments have questioned this result because the cases in which the United Nations intervened were quite different from those in which they did not. (...) We correct for the effects of nonrandom assignment with matching techniques on a sample of UN interventions in post-Cold-War conflicts ... "

Matching? Beispiele 19

Beispiele

Mayer 2011 (JOP): Does Education Increase Political Participation?

"The consensus among scholars has long held that educational advancement causes greater political participation. (...) This recent work strongly suggests that selection mechanisms confound previous results, and it employs propensity score matching to argue that education has no effect. In this article I show how propensity score matching, ..., introduces bias by creating poorly matched treatment and control groups. (...) I use genetic matching to create balanced treatment and control groups."

Matching? Beispiele 19

Should I or Shouldn't I?

Ho et al. 2006

Matching methods, which offer the promise of causal inference with fewer assumptions, constitute one possible way forward, but crucial results in this fast-growing methodological literature are often grossly misinterpreted.

MATCHING? Beispiele 20

Should I or Shouldn't I?

lacus et al. 2011

... widely used current methods, such as propensity score and Mahalanobis matching ... [do] not guarantee any level of imbalance reduction in any given data set In any application a single use of these techniques can increase imbalance and model dependence by any amount.

MATCHING? Beispiele 20

Should I or Shouldn't I?

Sekhon 2009

"Without an experiment, natural experiment, a discontinuity, or some other strong design, no amount of econometric or statistical modeling can make the move from correlation to causation persuasive"

MATCHING? Beispiele 20

Zusammenfassung

Zusammenfassung

- Matching: Selektives Entfernen von Fällen → Ex-post balancierte(re) Daten
- Hilft "extreme counterfactuals" zu vermeiden (CEM)
- Funktioniert nur, wenn relevante X-Variablen erhoben
- Vor allem interessant f
 ür Quasi-Experimente (Evaluation)
- Keine Wunderwaffe (schade!)

ZUSAMMENFASSUNG 21

Literatur für die beiden nächsten Sitzungen

- Berning (2018), Strukturgleichungsmodelle In: Wagemann C., Goerres A., Siewert M. (eds) Handbuch Methoden der Politikwissenschaft. Springer Reference Sozialwissenschaften. Springer VS, Wiesbaden, http://www.doi.org/10.1007/978-3-658-16937-4_30-2
- Arzheimer (2015), Strukturgleichungsmodelle. Eine anwendungsorientierte Einführung. Wiesbaden: Springer VS, http://dx.doi.org/10.1007/978-3-658-09609-0

ZUSAMMENFASSUNG 22