Multiple Regression

Statistik II

Übersicht

Wiederholung

Literatur

Regression

Multivariate Zusammenhänge

Assoziation und Kausalität

Statistische Kontrolle

Multivariate Beziehungen

Inferenz

Multiple Regression

Das Multivariate Modell

Beispiel: Bildung und Verbrechen

Fit

Zusammenfassung

Literatur für heute

- ► Agresti ch. 10
- ► Zur Nach- und Vorbereitung:
- ► Agresti ch. 11

Literatur für nächste Woche

- Mason/Wolfinger: Cohort Analysis.
- ► Kish: Weighting: Why, When, and How?

Daten/Kommandos für heute

- ▶ net get from http://www.kai-arzheimer.com/Statistik-II/stata/
- ▶ net describe floridacrime
- net get floridacrime

Was ist Regression?

- Modellierung konditionaler Verteilung (Mittelwert und Streuung)
- Beschreibung vs. Inferenz
- Daten vs. Modellannahmen
- Bekanntestes und einfachstes Modell: lineare (Einfach)-Regression

Was ist lineare Einfachregression?

- ▶ Der konditionale Mittelwert einer abhängigen Variablen y wird modelliert als
- lineare Funktion einer unabhängigen Variablen x und einer Konstanten
- Gemeinsame Verteilung von x und y als Punktewolke (Fehlervarianz) um eine gerade Linie
- Allgemeines Muster für viele andere statistische Modelle
- ▶ Bestimmung der Parameter durch OLS (Minimale quadrierte Abweichung in *y*-Richtung)

Wie funktioniert OLS (ohne Mathematik)

- ► SAQ = Funktion(Daten, Parameterschätzungen)
- Daten sind gegeben
- Welche Parameterschätzungen machen SAQ möglichst klein (guter Fit, gute Schätzung)?
- Minimum der SAQ-Funktion suchen $\to 1$. Ableitung auf null setzen, nach Konstante und Steigung auflösen
 - 1. Formeln aus Formelsammlung
 - 2. Alternativ: kompakte Matrixalgebra

Was ist Kausalität?

- $\rightarrow X \rightarrow Y$
- Hypothetisch-kontrafaktisches Konzept von Kausalität
 - X und Y an einem Fall messen
 - Realität für diesen Fall mit anderem Wert von X "wiederholen"
 Änderung von Y?
 - In der Praxis nicht durchführbar, nur Annäherung an dieses Ideal
- ► Statistische Verfahren kein Ersatz für gutes Design

Was ist Kausalität?

- $\rightarrow X \rightarrow Y$
- Hypothetisch-kontrafaktisches Konzept von Kausalität
 - ▶ X und Y an einem Fall messen
 - Realität für diesen Fall mit anderem Wert von X "wiederholen"
 Änderung von Y?
 - In der Praxis nicht durchführbar, nur Annäherung an dieses Ideal
- Experiment:
 - Viele Objekte
 - ▶ X von Forscherin variiert, zeitliche Reihenfolge klar
 - Vergleichbar bezüglich anderer Eigenschaften wg. zufälliger Aufteilung auf Experimental-/Kontrollgruppe
- Statistische Verfahren kein Ersatz für gutes Design

Was ist Kausalität?

- $\rightarrow X \rightarrow Y$
- Hypothetisch-kontrafaktisches Konzept von Kausalität
 - ▶ X und Y an einem Fall messen
 - Realität für diesen Fall mit anderem Wert von X "wiederholen"
 Änderung von Y?
 - In der Praxis nicht durchführbar, nur Annäherung an dieses Ideal
- Beobachtung/Befragung (ex post facto)
 - ▶ Viele Objekte
 - ► Keine Kontrolle über *X* (zeitliche Reihenfolge), keine zufällige Aufteilung
 - Andere Eigenschaften nur "statistisch kontrollierbar"
- Statistische Verfahren kein Ersatz für gutes Design

Was setzt Kausalität voraus?

- $\rightarrow X \rightarrow Y$
- 1. (Theorie)
- 2. Statistische Assoziation (Übergang deterministische/probabilistische Aussagen!)
- 3. Richtige zeitliche Reihenfolge in ex post facto Designs fast nicht zu prüfen
- 4. Ausschluß von Drittvariablen

Beispiel: Körpergröße und Mathematik-Leistung

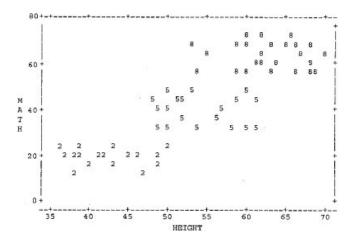


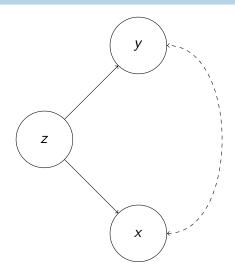
FIGURE 10.1: Printout Showing Relationship between Height and Math Achievement Test Score, with Observations Labeled by Grade Level. Students at a particular grade level have about the same age.

Beispiel: Pfadfinder und Delingquenz

TABLE 10.1: Contingency Table Relating Scouting and Delinquency

		Delin		
		Yes	No	Total
Boy Scout	Yes	36 (9%)	364 (91%)	400
	No	60 (15%)	340 (85%)	400

Beispiel: Pfadfinder und Delingquenz

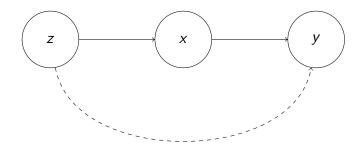

TABLE 10.2: Contingency Table Relating Scouting and Delinquency, Controlling for Church Attendance

				Church At	tendance			
		L	ow	Me	dium	High		
Delinquency		Yes	No	Yes	No	Yes	No	
Scout	Yes	10 (20%)	40 (80%)	18 (12%)	132 (88%)	8 (4%)	192 (96%)	
Scout	No	40 (20%)	160 (80%)	18 (12%)	132 (88%)	2 (4%)	48 (96%)	

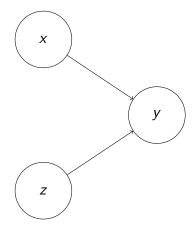
Welche Beziehungen können zwischen drei Variablen bestehen?

- 1. "Scheinkorrelation"/"scheinbare Non-Korrelation"
- 2. Mediatorvariable
- 3. Multiple Verursachung
- 4. Interaktion
- 5. ...

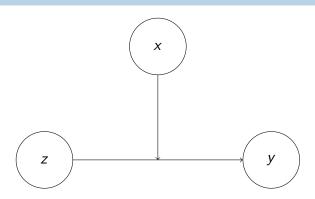
1. "Scheinkorrelation"


"Scheinbare Non-Korrelation" (Suppression)

▶ Kein Zusammenhang zwischen Bildung und Einkommen?


TABLE 10.4: Bivariate Tables Relating Education, Income, and Age

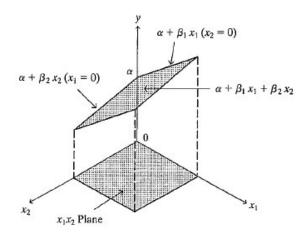
	Income			Income			Education	
Education	High	Low	Age	High	Low	Age	High	Low
High	250	250	High	350	150	High	150	350
Low	250	250	Low	150	350	Low	350	150


2. "Mediatorvariable"

3. "Multiple Verursachung"

4. "Interaktion"

Schluß auf die Grundgesamtheit?

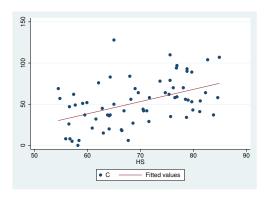

- ► Kontrolle für multivariate Beziehungen durch multivariate Modelle
- Inferenzen verfügbar

Modell (zwei unabhängige Variablen)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- ▶ Wert von y von beiden unabhängigen Variablen beeinflußt
- Effekte linear (proportional) und additiv
- Effekte unabhängig voneinander
 - ▶ β_1 Effekt von x_1 während x_2 konstant gehalten wird (vgl. Pfadfinder-Tabelle)
 - \triangleright β_2 Effekt von x_2 während x_1 konstant gehalten wird
- ▶ D. h. wechselseitige statistische Kontrolle

Graphische Darstellung (zwei unabhängige Variablen)


Beispiel: Bildung und Verbrechen

- 67 counties in Florida
- Sind counties mit höherem Niveau von formaler Bildung (% high school Absolventen) krimineller (mehr Verbrechen pro Einwohner)?

. reg c hs						
Source	SS	df		MS		Number of obs = 67
Model Residual	11437.0945 41025.0249 52462.1194	1 65 66	11437 631.1 794.8			F(1, 65) = 18.12 Prob > F = 0.0001 R-squared = 0.2180 Adj R-squared = 0.2060 Root MSE = 25.123
С	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
hs _cons	1.485977 -50.85691	.3490 24.45		4.26 -2.08	0.000 0.041	.788821 2.183133 -99.68823 -2.025583

Scatterplot + Regression

graph twoway (scatter c hs) (lfit c hs)

"Scheinkorrelation"?

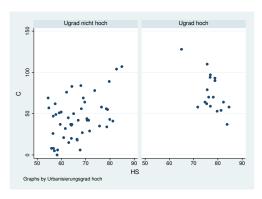
- ► Kontrolle: multiple Regression
- Verbrechen = $\alpha + \beta_1$ Bildung + β_2 Urbanisierung
- ► Effekt von Bildung für jedes denkbare Niveau von Urbanisierung
- Effekt von Urbanisierung für jedes denkbare Niveau von Bildung

Regression in Stata

- ► Grundbefehl (reg)ress y x1 x2 ...
- Variablennamen können abgekürzt werden
- Jokerzeichen oder Bereiche für Variablen
- ► Ergebnis der letzten Regression → reg
- (Optionen mit Komma abtrennen)
- Postestimation (z. B. predict)

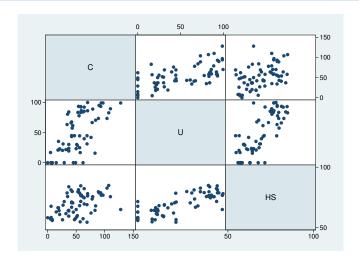
In Stata...

	. reg c hs u								
	Source	SS	df		MS		Number of obs	=	67
-							F(2, 64)	=	28.54
	Model	24731.6571	2	1236	5.8286		Prob > F	=	0.0000
	Residual	27730.4623	64	433.	288473		R-squared	=	0.4714
-							Adj R-squared	=	0.4549
	Total	52462.1194	66	794.	880597		Root MSE	=	20.816
	С	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	hs	5833773	.4724	1591	-1.23	0.221	-1.527223		3604684
	u	.6825014	.1232	2126	5.54	0.000	.436356		9286469
	_cons	59.11806	28.36	5531	2.08	0.041	2.45184	1	15.7843


- Urbanisierung hat eine starken positiven Effekt
- ► Bildung hat *negativen* Effekt
- Partieller Effekt (vs. bivariater Effekt)

Das Multivariate Modell
Beispiel: Bildung und Verbrechen

Partielle Effekte

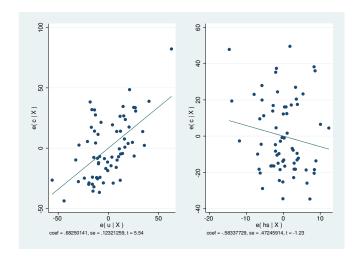

- Partielle Effekte = Effekt von Bildung
- Innerhalb einer Gruppe von counties mit identischem (aber beliebigem) Urbanisierungsgrad
- Schätzung über alle Niveaus von Urbanisierungsgrad
- Und umgekehrt
- Analog zur Betrachtung von Subgruppen im Pfadfinder-Beispiel
- ▶ Partielle Koeffizienten ≠ Bivariate Koeffizienten wg. Korrelation zwischen unabhängigen Variablen
- Nicht beim Experiment

Warum ist der partielle Effekt negativ?

Urbanisierungsgrad wird "konstant gehalten"

Visualisierung: Matrixplot

Partielle Regressionsplots



- (Added Variable Plot)
- Residuum: Differenz zwischen beobachtetem und geschätztem Wert
- ▶ Verbrechen = $\alpha_1 + \beta_1$ Urbanisierung → Residuum = Verbrechen abzüglich Effekt von Urbanisierung
- ▶ Bildung = $\alpha_2 + \beta_2$ Urbanisierung → Residuum = Bildung abzüglich Effekt von Urbanisierung

Partielle Regressionsplots

- ▶ Regression von Residuum 1 auf Residuum 2 \rightarrow identisch mit partiellem Regressionskoeffizienten
- ▶ Plot . . .
- ... für alle unabhängigen Variablen, Identifikation von Ausreißern
- avplots
 - Ein plot pro unabhängige Variable
 - Partieller Effekt dieser Variablen auf abhängige Variable \rightarrow Ausreißer

Partielle Regressionsplots

Root Mean Squared Error

- ▶ Verbrechen: 0 128; Residuum = Vorhersagefehler
- ▶ Residuum quadrieren und aufsummieren → SAQ
- ► SAQ/n= Mittlerer quadrierter Fehler
- ▶ Wurzel → RMSE
- Wie bei Einfachregression
 - . predict abweichung, resid
 - . gen aq=abweichung *abweichung
 - . sum aq

Variable	Obs	Mean	Std. Dev.	Min	Max
aq	67	413.8875	495.9546	.8899312	2568.242

[.] displ sqrt(414)

20.34699

- Analog zur Einfachregression
 - R = Korrelation zwischen vorhergesagten/beobachteten Wert bzw.
 - ▶ Gesamt SAQ (TSS) = Modell-SAQ (MSS) + Residuale SAQ (RSS)
 - ▶ (PRE-Interpretation)

$$R^2 = \frac{TSS - RSS}{TSS} = \frac{MSS}{TSS} = \frac{\Sigma(y - \bar{y})^2 - \Sigma(y - \hat{y})^2}{\Sigma(y - \bar{y})^2}$$

- Kollinearität zwischen unabhängigen Variablen
- Adjusted R²

R/R^2 von Hand ausrechnen

```
. predict yhat
(option xb assumed; fitted values)
. corr yhat c
(obs=67)
```

	ynat	с
yhat c	1.0000 0.6866	1.0000

. display .69^2 .4761

Zusammenfassung

- ▶ Korrelation ≠ Kausalität
- Multiple Regression
 - Keine Kontrolle über unabhängige Variable(n) (vs. Experiment)
 - (Schwacher) Ersatz für Randomisierung (Drittvariablenkontrolle)
- Partielle vs. bivariate Effekte
- ▶ Fit analog zu Einfachregression
- Inferenz für Koeffizienten?
- Nächste Woche: Agresti ch. 11