Daten/graphische Darstellungen

Statistik I

Sommersemester 2009

Daten

Rohdaten/Konventionen

Tabellen

Häufigkeiten

Anteilswerte

Graphische Darstellungen

Kategoriale Daten

Eine Dimension

Zwei und mehr Dimensionen

Kontinuierliche Daten

Fine Dimension

Zwei und mehr Dimensionen

Sonderfall: Kartogramme

Mißbrauch graphischer Darstellungen Zusammenfassung

Zum Nachlesen

- ► Gehring/Weins: Kapitel 5
- ► Agresti/Finlay: Kapitel 3.1

Beispieldatensätze

- European Social Survey (drei Länder)
 - ► Insgesamt 5 463 Befragte
 - Aus Österreich, Italien, Schweden
 - Alter, Geschlecht, Links-Rechts etc.
 - Individual-/Mikrodaten
- ► Französische Regionalwahl 2004
 - 96 Départements auf dem französischen Festland
 - Stimmenanteil Front National, Arbeitslosenquote, Zuwanderer etc.
 - Aggregat-/Makrodaten

Was ist eine "Rohdatenmatrix"?

- ightharpoonup "Rohe" (nicht-bearbeitete) Meßwerte ightarrow Tabelle
- "Fälle" (Untersuchungsobjekt = Personen, Länder, Départements etc.) → Zeilen
- "Variablen" (Eigenschaft = Nationalität, Links-Rechts-Wert etc.) → Spalten

	cntry	idno	lrscale	trstplt	trstplc	vote
1.	IT	3183200	6	2	7	yes
2.	SE	202429	6	3	6	yes
3.	AT	602	5	no trust	8	yes
4.	AT	1934	5	6	9	not elig
5.	IT	3583300	Teft	6	8	yes
6.	IT	3457000	4	7	9	yes
7.	AT	1216	4	4	7	yes
8.	IT	3120400	6	5	7	yes
9.	IT	3029500	left	5	complete	ves

- ► In Formeln werden Variablen durch lateinische Kleinbuchstaben (meist vom Ende des Alphabets) abgekürzt: u, v, w, x, y, · · ·
- ► Fälle erhalten eine laufende Nummer ("Index")
- ▶ Die Zahl der Fälle wird mit dem Buchstaben *n* abgekürzt
- ▶ Deshalb nimmt der Index ganze Werte zwischen 1 und *n* an

▶ Ohne Informationsverlust . . .

	Country	Age	LRscale
1	SE	55	6
2	AT	43	7
3	SE	32	9
4	IT	34	8
5	AT	26	5

- Ohne Informationsverlust . . .
- ▶ Können ganze Zeilen beliebig vertauscht werden

	Country	Age	LRscale
4	IT	34	8
1	SE	55	6
3	SE	32	9
2	AT	43	7
5	AT	26	5

- Ohne Informationsverlust . . .
- ▶ Können ganze Zeilen beliebig vertauscht werden
- ► Können ganze Spalten beliebig vertauscht werden

	Country	LRscale	Age
1	SE	6	55
2	AT	7	43
3	SE	9	32
4	IT	8	34
5	AT	5	26

- ▶ Ohne Informationsverlust . . .
- ► Können ganze Zeilen beliebig vertauscht werden
- ► Können ganze Spalten beliebig vertauscht werden
- Oder beides

	Country	LRscale	Age
4	IT	8	34
1	SE	6	55
3	SE	9	32
2	AT	7	43
5	AT	5	26

- Ohne Informationsverlust . . .
- ▶ Können ganze Zeilen beliebig vertauscht werden
- ► Können ganze Spalten beliebig vertauscht werden
- Oder beides
- Aber nicht Teile von Spalten/Zeilen

	Country	LRscale	Age
4	IT	8	34
1	SE	9	55
3	SE	6	32
2	7	AT	43
5	AT	5	26

Was sind Tabellen?

- Allgegenwärtiges Hilfsmittel zur Auswertung und Präsentation von Daten
- Besteht aus Zeilen und Spalten
- Meist zweidimensional, aber
 - ► Eindimensionale Tabellen: Liste
 - Mehrdimensionale Tabellen (Aufteilung in Untertabellen)
- ▶ Begrenzte Anzahl von Spalten/Zeilen → Spalten/Zeilen entsprechen kategorialen (oder kategorisierten) Variablen
- Grundlage f
 ür viele (aber nicht alle) graphischen Darstellungen

Häufigkeitsauszählung

- ► Einfachste Form der Datenauswertung: Wie häufig kommen die Ausprägungen einer einzigen kategorialen Variablen vor?
- Vorgehensweise: Rohdatenmatrix nach den Kategorien der betreffenden Variablen sortieren
- Anschließend Häufigkeiten auszählen

	Country	Age	LRscale
1	SE (3)	55	6
2	AT (1)	43	7
3	SE (3)	32	9
4	IT (2)	34	8
5	AT (1)	26	5

Häufigkeitsauszählung

- ► Einfachste Form der Datenauswertung: Wie häufig kommen die Ausprägungen einer einzigen kategorialen Variablen vor?
- Vorgehensweise: Rohdatenmatrix nach den Kategorien der betreffenden Variablen sortieren
- ► Anschließend Häufigkeiten auszählen

	Country	Age	LRscale
2	AT (1)	43	7
5	AT (1)	26	5
4	IT (2)	34	8
3	SE (3)	32	9
1	SE (3)	55	6

Häufigkeitsauszählung II

Country	Häufigkeit
AT (1)	2
IT (2)	1
SE (3)	2

Was sind "relative Häufigkeiten"?

- Absolute Häufigkeiten meistens relativ uninteressant
- Relative Häufigkeiten: Absolute Häufigkeit durch Zahl der Fälle

Country	absolute Häufigkeit	relative Häufigkeit
AT (1)	2	
IT (2)	1	
SE (3)	2	
Σ	5	

Der griechische Großbuchstabe Σ bedeutet "Summe" (mehr dazu nächste Woche)

Was sind "relative Häufigkeiten"?

- Absolute Häufigkeiten meistens relativ uninteressant
- Relative Häufigkeiten: Absolute Häufigkeit durch Zahl der Fälle

Country	absolute Häufigkeit	relative Häufigkeit
AT (1)	2	$\frac{2}{5} = 0,4$
IT (2)	1	$\frac{1}{5} = 0, 2$
SE (3)	2	$\begin{array}{l} \frac{2}{5} = 0, 4 \\ \frac{1}{5} = 0, 2 \\ \frac{2}{5} = 0, 4 \end{array}$
Σ	5	1

Der griechische Großbuchstabe Σ bedeutet "Summe" (mehr dazu nächste Woche)

Was sind Prozente?

► Prozent = relative Häufigkeit × 100

Country	absolute Häufigkeit	relative Häufigkeit	Prozent
AT (1)	2	0,4	
IT (2)	1	0,2	
SE (3)	2	0,4	
Σ	5	1	

Was sind Prozente?

► Prozent = relative Häufigkeit × 100

Country	absolute Häufigkeit	relative Häufigkeit	Prozent
AT (1)	2	0,4	=40%
IT (2)	1	0,2	=20%
SE (3)	2	0,4	=40%
Σ	5	1	100%

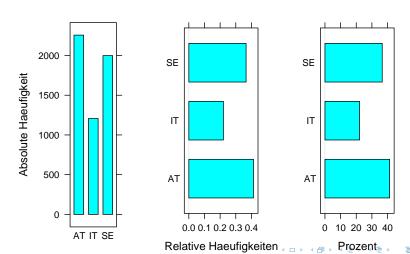
Wie unterscheiden sich Prozente von Prozentpunkten?

- ► Relative Häufigkeit = absolute Häufigkeit / n
- ▶ Prozente = Relative Häufigkeit × 100
- Prozentpunkte = Differenz zwischen Prozentsätzen
 - Beispiel SPD-Anteil
 - BTW 1994 36,4%, BTW 1998 40,9% der gültigen Zweitstimmen
 - Verbesserung um 4,5 Prozentpunkte
 - ▶ Entspricht einer Zunahme um $(4,5/36,4)*100 \approx 12,4$ Prozent
- ▶ Das heißt: Veränderungen zwischen Prozentsätzen können als absolute Veränderungen (in Prozentpunkten) oder wiederum als prozentuale Veränderungen ausgedrückt werden


Exkurs: Typische Prozentuierungen in der Wahlforschung

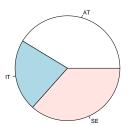
- Prozentuierung auf Wahlberechtigte
 - ▶ abgegebene Stimmen/Wahlberechtigte = Wahlbeteiligung → Anteil der Nichtwähler
 - Stimmen für eine Partei/Wahlberechtigte erlaubt Vergleich der Mobilisierungsleistung unabhängig von Wahlbeteiligung
- Prozentuierung auf abgegebene Stimmen
 - Nur interessant, um den Anteil der ungültigen Stimmen zu berechnen
- Prozentuierung auf gültige Stimmen
 - Wichtig für Sitzverteilung im Parlament
 - Unterscheidet sich in Deutschland kaum von Prozentuierung auf abgegebene Stimmen
 - ▶ (Frankreich, Belgien etc.)
- Sonderfall: Prozentuierung auf gültige und berücksichtigungsfähige Stimmen

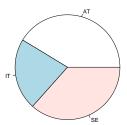
Was sind graphische Darstellungen?


- Vor allem für kleinere Datensätze eigenständige Form der induktiven Analyse
- ► (Sehr) große Datensätze → Probleme
- Häufiger: Veranschaulichung tabellarischer und anderer Analysen
 - ▶ Ein Bild sagt mehr . . .
 - Mißbrauch, Irreführung, überflüssige Darstellungen (eye candy)
- Vermeiden Sie nach Möglichkeit (überflüssige) dreidimensionale Darstellungen
- Möglichst klare Darstellung ("viel Information pro Linie")
- Konventionen
 - ► Waagerechte Achse = x-Achse
 - Senkrechte Achse = y-Achse

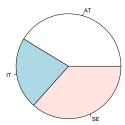
Balken- und Säulendiagramme

- Sind äquivalent (Unterschied nur in der Leserichtung des Diagramms)
- Können für nominal- und ordinalskalierte Daten verwendet werden
- Bei ordinalen Variablen muß die Reihenfolge der Kategorien in der Grafik erhalten bleiben
- ▶ Absolute Häufigkeiten, relative Häufigkeiten oder Prozente


Balken/Säulen: Nationalität

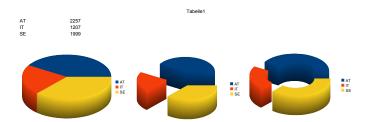

990

- Darstellung von relativen Häufigkeiten/Prozenten
- ► Haben (unverdient?) schlechten Ruf
- ► Für Laien scheinbar anschaulich


- Darstellung von relativen Häufigkeiten/Prozenten
- ► Haben (unverdient?) schlechten Ruf
- ► Für Laien scheinbar anschaulich

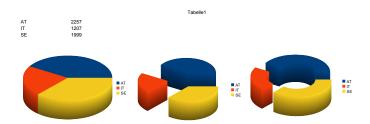
- Darstellung von relativen Häufigkeiten/Prozenten
- ► Haben (unverdient?) schlechten Ruf
- Für Laien scheinbar anschaulich
- ► Fläche/Winkel entspricht Anteil → Wahrnehmung häufig verzerrt

- Darstellung von relativen Häufigkeiten/Prozenten
- ► Haben (unverdient?) schlechten Ruf
- Für Laien scheinbar anschaulich
- ► Fläche/Winkel entspricht Anteil → Wahrnehmung häufig verzerrt
 - ▶ AT $\approx 2 \times IT$?
 - ► AT > IT?



Peinliche Pie-Charts

▶ Dreidimensionale Darstellungen verschärfen die Probleme

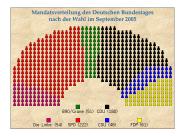

Peinliche Pie-Charts

▶ Dreidimensionale Darstellungen verschärfen die Probleme


Peinliche Pie-Charts

- ▶ Dreidimensionale Darstellungen verschärfen die Probleme
- ► Finger weg davon!

Halbkreise: Gut gemeint, schlecht gemacht


- Stimmenanteile von Parteien werden oft als Halboder Drei-Viertelkreis dargestellt
- SpiegeltSitzordnung im Parlament wieder
- ► Völlige Verwirrung: ½ Kreis = 50%

- ► Zusätzliche Komplikation: Halbkreis nicht völlig rund
- ▶ Wie groß ist die Regierungsmehrheit?

Halbkreise: Gut gemeint, schlecht gemacht

- Stimmenanteile von Parteien werden oft als Halboder Drei-Viertelkreis dargestellt
- SpiegeltSitzordnung im Parlament wieder
- ► Völlige Verwirrung: ½ Kreis = 50%

- ▶ Zusätzliche Komplikation: Halbkreis nicht völlig rund
- ▶ Wie groß ist die Regierungsmehrheit?
- ightharpoonup 73% imes 180 Grad pprox 130 Grad, verteilt auf drei Blöcke

Kategoriale Variablen: Zwei und mehr Dimensionen

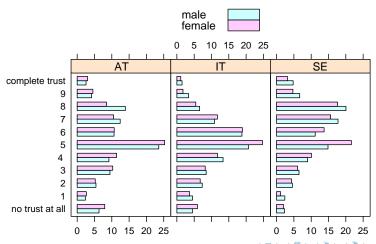
▶ Vertrauen in das nationale Parlament . . .

Kategoriale Variablen: Zwei und mehr Dimensionen

- ▶ Vertrauen in das nationale Parlament . . .
- Nach Ländern

Kategoriale Variablen: Zwei und mehr Dimensionen

- ▶ Vertrauen in das nationale Parlament . . .
- Nach Ländern
- Und nach Geschlecht


Kategoriale Variablen: Zwei und mehr Dimensionen

- Vertrauen in das nationale Parlament . . .
- Nach Ländern
- Und nach Geschlecht
- Unterschiedliche Verteilungen zwischen Ländern
- Unterschiede innerhalb von Ländern

Politisches Vertrauen nach Geschlecht und Land

		Male		Female		
	AT	ΙΤ	SE	AT	ΙΤ	SE
no trust at all	6	5	2	8	6	2
1	2	5	2	3	4	1
2	5	7	5	5	7	4
3	9	8	6	10	8	6
4	9	13	9	11	12	10
5	24	21	15	25	25	22
6	11	19	11	11	19	14
7	12	11	18	11	12	16
8	14	7	20	8	5	18
9	4	3	7	5	2	5
complete trust	3	2	5	3	1	3
Σ	100	100	100	100_	100	100

Politisches Vertrauen nach Geschlecht und Land

Darstellung von kontinuierlichen Daten

- Sind politikwissenschaftliche Daten jemals wirklich kontinuierlich?
 - Beschränkter Meßbereich (Vertrauen von 0 10)
 - ▶ Beschränkte Zahl von Meßwerten (ganze Zahlen 0, 1, 2, · · · 10)
 → beschränkte Genauigkeit oder "Auflösung" der Messung
 - Alter?
- "Kontinuierlich" eine konzeptuelle Eigenschaft der Messung
- Plausible Annahme?
- Ab fünf/sieben verschiedenen Meßwerten meist zu rechtfertigen

Histogramme, Polygonzüge, Dichteschätzung I

- ► Für intervall- und ratioskalierte Daten geeignet
- ▶ Relevant sind sowohl die x-Achse (waagerechte Achse) als auch die y-Achse (senkrechte Achse) des Diagramms
 - X-Achse: Ausprägung der Variablen
 - Y-Achse: Häufigkeit/Wahrscheinlichkeit der Ausprägung
- ► Kontinuierliche Merkmale → Rechtecke werden direkt nebeneinander gezeichnet
- ► Häufigkeit/Wahrscheinlichkeit von Meßwerten aus einem bestimmten *Intervall* wird durch die *Fläche* repräsentiert
- Intervalle sollten gleich breit sein, um Verwirrung zu reduzieren
- Intervallbreite sollte "ansprechend" sein (wichtig bei kleinen Datensätzen)

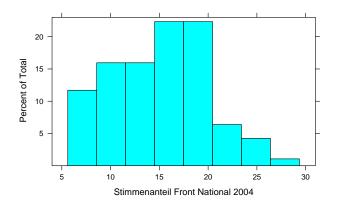
Was ist ein Intervall?

- Kontinuierliche Variable wird für Darstellung im Histogramm in Bereiche eingeteilt
- ▶ Intervall = Wertebereich
 - In einem "geschlossenen" Intervall sind die Grenzwerte des Bereichs mitenthalten → eckige Klammern
 - In einem "offenen" Intervall sind die Grenzwerte nicht enthalten
 - \rightarrow runde Klammern
 - Ein "halboffenes Intervall" enthält einen der beiden Grenzwerte

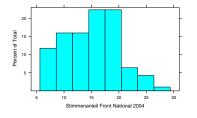
Beispiel: Alter von Erwerbstätigen (16-66)

Intervall	Wertebereich		
[16; 31)	$16 \leqslant Alter < 31$		
[31; 46)	$31 \leqslant Alter < 46$		
[46; 51)	$46 \leqslant Alter < 51$		
[51; 66]	$51 \leqslant Alter \leqslant 66$		

Unterstützung für den Front National 2004: Histogramm I


- ► Regionalwahl 2004
- Départements als Stimmbezirke
- Relativ komplexes Verhältniswahlsystem
- 94 Départements auf dem französischen Festland
- Stimmenanteil für den FN in der ersten Runde in Prozent
 - Kontinuierlich
 - Auf Wertebereich 6,5-28,5 beschränkt

Fall	Département	FN 2004
1	Ain	20.5
2	Aisne	24.1
3	Allier	10.8
4	Alpes de Haute Provence	15.6



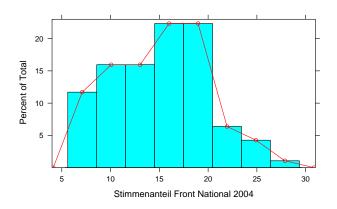
Unterstützung für den Front National 2004: Histogramm II

Intervallgrenzen: 5.6, 8.6, ... 29.4; Breite: 2.97 Prozentpunkte

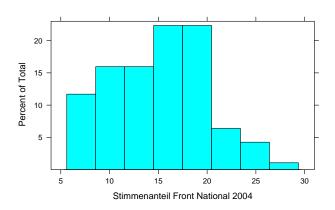
Was können wir hier sehen?

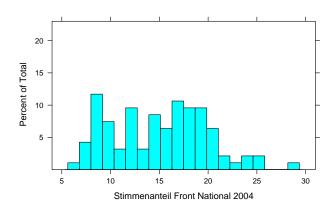
- In knapp der Hälfte aller Départements (44%) erhält der FN zwischen 14,5 und 20,5% der Stimmen
- ► In rund 11% der Départements sind es mehr als 20,5%
- Nur in 12% der Départements sind es weniger als 8,9% der Stimmen
- ▶ Nirgends sind es weniger als 5,6%
- ▶ Die Verteilung ist eingipflig, aber schief (mehr Fälle auf der linken Seite – weniger Stimmen. Mehr dazu nächste Woche)

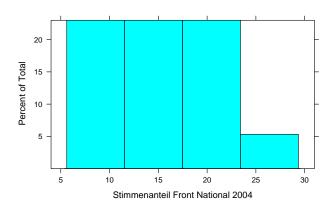
Polygonzüge


1. Warum?

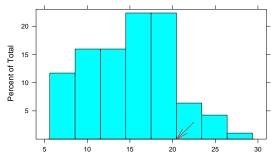
- Variable auf x-Achse kontinuierlich → "Dichteschätzung"
- ► (Boxen unendlich schmal machen, Linie zwischen realen Datenpunkten extrapolieren)
- Polygonzug: Gleichzeitige Darstellung von zwei Histogrammen, z.B. Stimmenanteil 2004/1998


2. Wie?


- ► Mittelpunkt der "Deckel" der Boxen miteinander verbinden
- Linie zu den Mittelpunkten der (gedachten) Boxen links und rechts vom Histogramm herunterziehen
- ► Fläche unter Polygonzug entspricht Fläche des Histogramms entspricht 100%

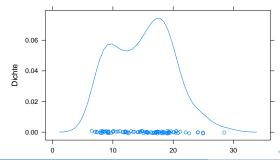

Polygonzüge

- 1. "Sprünge" im Histogramm
- Aussehen des Histogramms hängt von oberer/unterer Schranke ab
- 3. Aussehen des Histogramms hängt von (willkürlicher) Klassenbreite ab

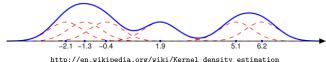

Dichteschätzung als Alternative

	Département	FN 2004	
1	Ain	20,51	
2	Haut-Rhin	20,50	
3	Territoire de Belfort	20,41	

- ► Kontinuierliche Variable können unendlich viele Werte annehmen → "Sprünge" im Histogramm irreführend.
- ▶ In welche von mehreren Boxen ein realer kontinuierlicher Wert fällt, ist in gewisser Weise zufällig
- ► Wahrscheinlichkeit eines Front National Ergebnisses im Bereich 20,41-20,51 fällt nicht schlagartig ab


Dichteschätzung als Alternative

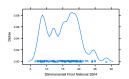
	Département	FN 2004
1	Ain	20,51
2	Haut-Rhin	20,50
3	Territoire de Belfort	20,41

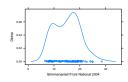


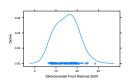
Dichteschätzung als Alternative

	Département	FN 2004	
1	Ain	20,51	
2	Haut-Rhin	20,50	
3	Territoire de Belfort	20,41	

Dichteschätzung als Alternative II

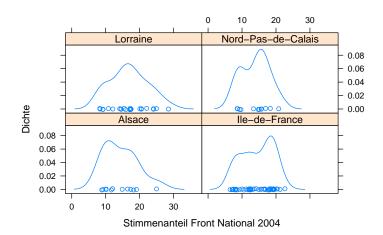



nttp://en.wikipedia.org/wiki/kernei_density_estimation


- Jeder Fall wird durch eine kleine Glockenkurve repräsentiert
- ► Gipfel bei tatsächlichem Wert
- Abfallende Verteilung, weil Wert mit zusehends geringerer Wahrscheinlichkeit auch in der Nachbarschaft liegen könnte
- ► Individuelle Kurven werden überlagert → Schätzung für die Gesamtverteilung

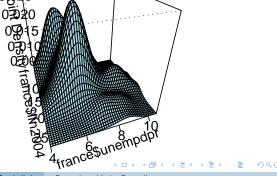
Dichteschätzung als Alternative III

- ► Löst Problem der "Sprünge"
- Problem der oberen/unteren Schranke besteht in ähnlicher Weise
- ▶ Problem der Klassenbreite → Problem der Bandbreite



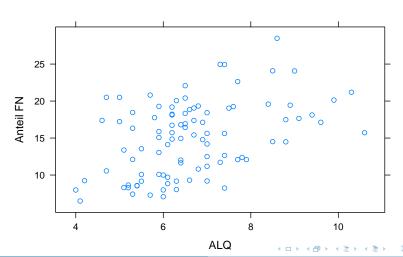
Zwei und mehr Dimensionen

- 1. Eine kontinuierliche, eine kategoriale Variable (z.B. Region)
 - ▶ Gleiches Prinzip wie bei zwei kategorialen Variablen
 - Panels


FN-Erfolge in vier französischen Regionen

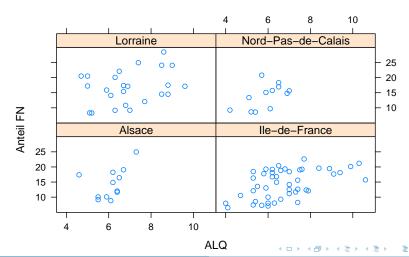
Zwei und mehr Dimensionen

- 1. Eine kontinuierliche, eine kategoriale Variable (z.B. Region)
 - ▶ Gleiches Prinzip wie bei zwei kategorialen Variablen
 - Panels
- Zwei kontinuierliche Variablen (z.B. Stärke FN und Arbeitslosenquote im Département)
 - Dreidimensionale Darstellung
 - Oder topographische Darstellung (wie eine Wanderkarte)
 - Oder tomographischer Plot . . .
 - Am besten und einfachsten: Streudiagramm (scatterplot)


FN-Erfolge und Arbeitslosigkeit

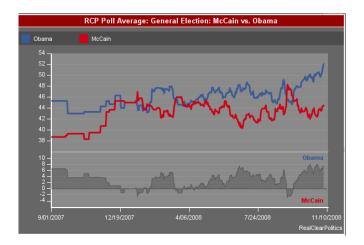
Streudiagramme/Scatterplots

- Standarddiagramm f
 ür zwei kontinuierliche Variablen
- Jede Beobachtung wird durch Punkt oder anderes Symbol in zwei Dimensionen repräsentiert
- Zeigt (oder suggeriert) bivariaten Zusammenhang
- ► Funktioniert nicht für sehr große Datensätze
- ▶ Problematisch, wenn Variablen nur wenige Ausprägungen haben (pseudo-kontinuierliche Daten → jitter)


FN-Erfolge und Arbeitslosigkeit

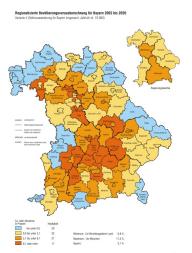
Streudiagramme/Scatterplots

- Standarddiagramm f
 ür zwei kontinuierliche Variablen
- Jede Beobachtung wird durch Punkt oder anderes Symbol in zwei Dimensionen repräsentiert
- Zeigt (oder suggeriert) bivariaten Zusammenhang
- ► Funktioniert nicht für sehr große Datensätze
- ▶ Problematisch, wenn Variablen nur wenige Ausprägungen haben (pseudo-kontinuierliche Daten → jitter)
- Durch Panels Erweiterung auf drei oder mehr Dimensionen möglich


FN-Erfolge und Arbeitslosigkeit in vier Regionen

Sonderfall des Streudiagramms: Zeitreihe

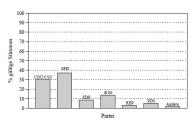
- Messung am selben Objekt wird über Zeit wiederholt
- Ein Datenpunkt für jede Messung
- Zeit auf x-Achse
- Mehrere Zeitreihen können in einem Diagramm kombiniert werden, wenn Maßstab vergleichbar ist

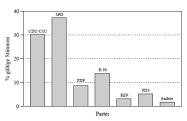

Wahlabsicht Obama vs. McCain

Kartogramme

- ► Sonderform der zwei- oder mehrdimensionalen Darstellung
- ► Eine kontinuierliche oder kategoriale Variable
- Zweite Variable: räumliche Position

Bevölkerungsprognose Bayern

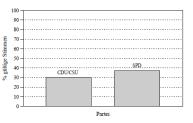


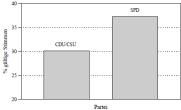

Manipulation graphischer Darstellungen

- Grafiken sollen der Veranschaulichung, nicht der Manipulation dienen
- Keine Histogramme, Polygonzüge, Dichteschätzungen für nominal- und ordinalskalierte Daten
- Maßstab so wählen, daß Unterschiede erkennbar sind, aber nicht übertrieben werden
- Unterbrechungen in Zeitreihen kennzeichnen
- "Künstlerische" Darstellungen (Figuren etc. vermeiden)
- ▶ Bei vergleichbaren Grafiken identischen Maßstab wählen
- Zwei Zeitreihen innerhalb einer Grafik sollten immer denselben Maßstab haben
- y-Achse muß bei null beginnen. Ansonsten Unterbrechung der Achse markieren

Manipulation durch Wahl des Maßstabs

Abbildung 5.7: Wahlabsicht bei Veränderung des y-Achsen-Maßstabes



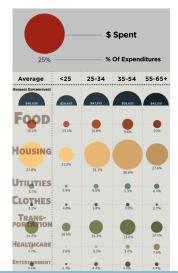


Quelle: ALLBUS 1994, n=2298

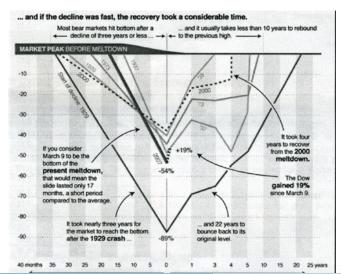
Manipulation durch Wahl der Grundlinie

Abbildung 5.8: Wahlabsicht mit korrekter und falscher Grundlinie

ALLBUS 1994, n=2298


Figuren etc. führen in die Irre

THE SHRINKING FAMILY DOCTOR In California


Percentage of Doctors Devoted Solely to Family Practice 1964 1975 1990 27 % 16.0% 12.0%

1: 2,247 RATIO TO POPULATION 8.023 Dectors

Totale Konfusion

Maßstabsproblem

Zusammenfassung

- Berechnung von Anteilswerten: einfachstes aber nützliches Verfahren
- Grafiken vor allem für kleinere Datensätze sehr nützlich
- Darstellung von ein, zwei oder mehr Dimensionen möglich
- Viele veröffentlichte Grafiken führen in die Irre (oder sind zumindest nicht hilfreich)